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ABSTRACT ABSTRACT

This study provided a comprehensive approach to examining the relative
significance and possible synergistic effects of speed, temperature, and fuel on mobile
source emissions modeling. Tests were conducted on each vehicle with a random
combination of three fuel types (Phase 1, Phase 2, and Indolene), three temperatures (50
F, 75 F, and 100 F), and ten speed cycles. It was found interaction terms among fuel,
speed, and temperature were statistically insignificant. Individually, the temperature and
fuel factor played a minor role in exhaust emission modeling. Speed and vehicle type
were the two dominant factors determining exhaust emissions. These results confirmed
the assumption in EMFAC that speed, temperature, and fuel factors are independent from
each other. Staff recommends that more resources should be allocated to cycle related

research in future.
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EXECUTIVE SUMMARYEXECUTIVE SUMMARY

In the current EMFAC model, speed, temperature, and fuel correction factors are
applied to the basic emission rates for adjustment to various conditions. Those correction
factors were assumed to be independent of each other; nevertheless, such assumption was
never confirmed. Modeling of the independent effects of these correction factors may
ignore their synergistic effects that could lead to the underestimation of exhaust emissions
under specific operating conditions. This study intends to confirm the above assumption
by examining the relative significance and possible synergistic effects of speed,
temperature, and fuel correction factors applied in EMFAC.

Eleven passenger vehicles from three fuel delivery system control groups were
tested, namely, three from carburetor (CARBU), three from throttle body injection (TBI),
and five from multi-port fuel injection (MPFI) group. A minimum of 90 tests were
conducted on each vehicle with a random combination of three fuel types (Phase 1, Phase
2, and Indolene), three temperatures (50 F, 75 F, and 100 F), and ten speed cycles. Each
vehicle was repeated for all ten speed cycles at 75 F with Indolene. The data were
analyzed using the analysis of variance (ANOVA) and Student-t tests of paired samples.

In general, exhaust emissions descended in the order of fuel delivery system,
namely, carburetor (CARBU), throttle-body injection (TBI), and multi-port fuel injection
(MPFD). All vehicles in the CARBU group contained a "dead" catalyst, which probably
explained why vehicles in CARBU were "high emitters."

Results from the paired t-test indicated that the difference in exhaust emissions
between Phase 1 and Phase 2 fuels for all vehicles was significant. The net exhaust
emissions reduction of Phase 2 over Phase 1 fuel for HC, CO, and NOx was 17%, 13%,
and 11%, respectively; which was in good agreements with the CARB emissions
reduction based on 1996 calendar year when Phase 2 fuel was introduced.

Temperature had minimal effects on exhaust emissions especially the test cycles

xviii



were in hot-stabilized mode. Nevertheless, exhaust emissions from cold-start mode were
higher than hot-start mode because the catalyst had not reached to optimal operating
temperature during the cold-start mode.

The relative contributions of speed, temperature, and fuel] to exhaust emissions
were determined using ANOVA and it was found interaction terms among fuel, speed,
and temperature were statistically insignificant. Individually, the temperature and fuel
factor played a minor role in exhaust emission modeling. Speed and vehicle type were
the two dominant factors determining exhaust emissions. These results suggested that the
correction factors applied in EMFAC were independent of each other. Because of the
relative importance of speed cycle on exhaust emission, statf recommends more resources

should be allocated to cycle related research in future.

xix



CHAPTER 1
INTRODUCTION
1.1 Backeround

Accelerated technoloéical progress, coupled with rapid global population
growth since the industrial revolution, has imbosed an enormous burden on the planet's
biosphere. Adverse environmental factors affect not only the earth's fragile ecosystem,
but also pose a direct health threat to humans. Physical boundaries generally exist for
pollutants in solid or solution form, however, similar physical restrictions do not exist
for air pollutants. While it is possible to avoid pollutants in solid or selution form, air
pollutants once released are transported over great distances, thereby exerting a more
far-reaching health impact than other pollutants in solid or solution form.

One of the most urgenf environmental problems in Southem California is its air
pollution. Southern California's Mediterranean-like climate and its unique topography
are ideal for the photochemical formation of smog. In the last few decades, an
expanding population has created major air pollution problems in many regions of the
S"tate. Air pollution is not just a blemish on the horizon, but a threat to California's
quality of life and its economic future. Studies conducted by the California Air
Resources Board (1991) have documented that smog can cost California. farmers up to
300 mullion dollars per ye‘ar,l affecting virtually every major crop. Furthermore, it is
estimated that the residents in the South Coast Air Basin experience ozone-related
symptoms on an average of up to 17 days a year and face an increased risk of death in

any year by 1/10,000 due to PMIOJ If applicable air pollution standards were attained,



1600 lives could be saved yearly (Hall et al., 1991).

The Bureau of Air Sanitation (BAS) was established in 1955 to identify air
© pollution levels that.could pose a threat to public health. In 1959 the Motor Vehicle
Pollution Control Board (RWPCB) was formed to address the issue of pollutants from
vehicular emissions. In 1967, the BAS and MVPCB merged to create the California
Air Resources Board (CARB). With this merger, the authority to define the health '
threat of air pollution and to regulate its causes was united into a single organization.
Presently, CARB oversees the air quality programs of counties, air pollution control
districts (APCDE), and regional air quality management districts (AQMDs).

In 1988, California's air quality prograrﬁ came of age. The most significant air
quality legislation in the last few decades, the California Clean Air Act (CCAA),
spells out California's air quality goals, planning mechanisms, regulatory mechaniéms
and standards of progress. Under CCAA, APCDs in violation are mandated to reduce
emissions by an average of five percent per year until California's air quaiity standards
are met. Best Available Control Technology (BACT) is promulgated to reduce
emissions from stationary sources. Moreover, CARB is required to adopt the most
effective mobile source emission contrel possible for on-road motor vehicles and off-
road mobile sources, including marine vessels, locomotives, utility engines, and farm
and construction equipment.

California has alwajs been a pionéer in combating air pollutioﬁ. For 1nstance,
California was the first -sta;ce_ to require posi_tive crankcase ventilation on automobile

* engines and to adopt emission standards for HC and CO. Table 1.1.1 illustrates a
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brief chronology of vehicle emission control technology 1n California. Early emission
control programs in the 1970's consisted of oxidation catalysts for control of CO and
HC. Later, three-way catalysts were introduced to control HC, CO, and NOx to meet
the lower emission standards.. This is reflected in the trend of emission standards for
different‘ vehicle model years as indicated in Table 1.1.2.

To further reduce emissions from mobile sources, CARB recently embarked on
a low-emission vehicle program with more stringent and technology-forcing emission
standards. Under the low-emission vehicie program, car manufacturers will sell the
new vehicles based on a flexible percentage-mix of _c:onventional vehicles (CV),
transitional low-emission vehicles (TLEV), low-emission vehicles: (LEV), ultra-low
emission vehicles (ULEV), and zero-emission .vehicles (ZEV) that will result in the
emissions meeting a fleet average NMOG standard starting in 1994. In other words,
the combined ceniﬁed testing of CV, TLEV, LEV, ULEV, or ZEV will meet the
fleet's average non-methane organic gas (NMOG) emission standards of that calendar
year for each car manufacturer. Thus, this technology-forcing approach encourages car
manufacturers to sell more "clean" vehicles in order to meet the fleet's average NMOG
e.mission standard. While there is no fixed percentage mix for CV, TLEV, LEV, and
ULEV, there is a mandatory percentage of ZEV to be sold in the market starting in
1998 (see Tables 1.1.3 and 1.1.4).

The-primary goal for setting air quality standards is to protect fhe public's
health. Table 1.1.5 provides both the national ambient air quality stand._ards and the

California air quality standards. Despite the severity of the South Coast Air Basin's
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Table 1.1.3 Low-emission vehicle standards (CARB, 1994).

Vehicle Class NMOG (g/my) CO (g/mi) NOx (g/mi)
Conventional Vehicle (CV) 0.25 34 04
Transitional Low-Emission Vehicle (TLEV) 0.125 3.4 04
Low-Emission Vehicle (LEV) 0.075 34 0.2
Utltra Low-Emission Vehicle (ULEV) 0.04 1.7 0.2

Table 1.1.4 Fleet average NMOG ermnission standards by calendar year (CARB, 1994).

Year NMOG (g/mi) . Percentage of ZEV required
1994 0.250 n.a
1995 0.231] n.a.
1996 0.225 na
1997 0.202 n.a.
1998 0.157 2%
1999 0.113 2%
2000 0.073 2%
2001 0.070 _ 5%
2002 0.068 5%
2003 0.062 10%
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present air.pollution problem, it represents a substantial improvement over historical
air quality. According to the South Coast Air Quality Management District
(SCAQMD, 1994), the federal standard exceedances for Q,, NO,, and CO decreased
b):' 32%; 95%, and 82%, respectively between 1975-77 and 1991-93 as shown in
Figure 1.1.1. Though California has made progress over the last ;two decades, 1t still
outranks all 49 other states in air quality problems, and Los Angeles remains the city
with the worst air quality in the nation (USEPA, 1993).

In California, motor vehicles are the major source of pollutants emitted each
year. According to the recent South Coast Air Quality Management Plan (SCAQMD,
1994) in the South Coast Air Basin, 98% of the carbon monoxide, 84% of nitrogen
oxides, and 62% of hydrocarbon emissions come directly from mobile sources (see
Table 1.1.6). Therefore, to combat the air pollution problem effectively, it 1s
imperative to further reduce mobile source emissions. Hou-fever, to develop a mobile
source emissions control policy, it is essential to have as accurate an inventory of
pollutant emissions as possible. As shown in Figure 1.1.2, the overall mobile source
emissions control plan depends on many components. From vehicle testing to
inventory models which shape the enforcemgnt strafegies énd ;;olicy, each component
is critical to other components. Nevertheless, the success of mobile source elmission
control strategies depends heavily on accurate inventory models derived from the
research data. Hence, it is essential to continually conduct research and refine the
current inventory models.

Both the CCAA and federal Clean Air Act (CAA) mandate compliance with-
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ambient air quality standards and set requirements for controlling EI:HiSSiOHS of air
pollutants. For those regions that don't meet the ambient air quality standards, the
State must propose State Imélementa‘don Plans (SIP) to bring those regions into
attainment by a specified date, varying with the severity of- the air pollution problem.
In the case of the federal Clean Air Act, areas failing to comply by that specific date
may be subject to economic sanctions (1990 Clean Air Act Amendment).

Compliance with air quality standards is determined by direct ambient air
measurements; however, forecasts of future air quality depend upon ambient air quality
models and emission inventory projecﬁon;. If the forecasts of air pollution for 2
particuiar area are higher than they should be; then the areé will incorporate more
costly emission control measures into its SIP than are necessary. On the other hand, if
the forecasts for an area are lower than they should be, then the area does not attain
the ambient air quality standards by its deadline and may face economic sanctions.
Since there arelundesirable repercussions from either overestimating or underestimating
an emission inventory, it is crucial to have an inventory that is as accurate as possible.
" For these reasons, a tremendous amount of effort has been devoted to develop and

refine inventory models.

12



1.2 Discvep:mchies in Emission Inventories

The primary purpose of promulgating emission limits is to achieve a desired
concentration of an atmosphéric pollutant. Such an approach is solely based on the
understanliing of the quantitative relatiénship between atmospheric emissions and
ambient air quality. For the last several decades there has been major progress in the
understanding of the chemistry leading to the formation of photochemical air pollution.
In particular, the chemical relationships between ozone formation and precursor (NOx
and VOC) emissions, as well as the kinetic aspects of night-time and day-time
chemical transformations of-pollutants, have been well documented (Finlayson-Pitts
and Pitts, 1986; Atkinson, 1988; Seinfeld, 1986, 1989; National Research Council,
1991).

At the same time, lthere have been significant advances in the development of
airshed models which assist in the formation of both mobile and stationary emission
control strategies tc; combat air pollution. For instance, the SCAQMD, the local
authority responsible for the regional air pollution control, uses models such as the
Urban Airshed Model (UAM) to study air pollution control strategies in order to fulfil,
via the State Implem.entation Plan (SIP), the requirements of the federal Clean Air Act
(CAA) and the California Clean A1r Act (CCAA). |

While the air pollutants from stationary sources can be monitored and
quantified, the pollutants from mobile sources are less well characterized bc:;th from a
real-time emission and real-time ambient monitoring perspective. Thﬁs, it remains a

challenge to develop reasonable mobile source emissions models to estimate the
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mobile source inventory. Though important groundwork has been laid in developing
the mobile emissions model, additional research is needed. The following two sections
briefly describe some of the major discrepancies between the mobile source emissions

model and that of atmospheric measurements.

1.2.1 Top-down Studies

"Top-down" studies attempt to reconcile the estimated emissions of air
pollutants with actual measured concentrations of fhe pollutants in the ambient air.
During the last several years, a number of independent investigators have published
studies suggesting that today's emission inventories may be underestimating emissions
of pon-methane organic gas (NMOG) and CO by substantial amounts. In the 1987
Southern California Air Quality Study, researchers found that the ambient CO/NOx
and NMOG/NQOx ratios v;/ere about 1.5 and 2 to 2.5 times higher, respectively, than
the corresponding inventory ratios. This suggested the on-road motor vehicle CO and
NMOG emission inventories were significantly underestimated (Fujita et al., 1992a,
1992b).

In a tunnel study conducted in Van Nuys, California, Ingalls et al. (1989) found
the emission rates of CO and volatile organic compound (VOC) were factors of 2.7 =
0.7and 3.8 £1.5 highelr, respectively, than values predicted by the Motor Vehicle
Emission Inventory model (MVEI). NOx emissions rates agreed feasdnably well with
médel prédiction: Emissions for the E-MFAC mo'del were calculated with the

- assumption that all vehicles in the tunnel reached a stable operating temperature. For
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the tunnel study, however, the actual fraction 5f vehicles in the cold operating mode
“was unknown. Cold operating mode (which occurs when the catalyst has not reached a
stable operating temperature)rincreases CO and VOC exhaust emissions and
evaporative losses and thus would reduce the discrepancies between measured and
predicted CO and VOC.

Pierson et al. (1990) reviewed the Van Nuys Tunnel study and concluded that
even if 100% of the observed vehicles operated in the cold mode, major idiscrepancies
still existed between the measured and predicted VOC and CO inventories. Moreover,
he found that underprediction of CO/NOx and . VOC/NOx was found in other previous
tunnel studies and roadside tests as well. All the above studies consistently suggested
the existence of a discrepancy between predicted and measured motor vehicle

emissions of CO and VOC.

1.2.2 Bottom-up Studies

Another means to confirm discrepanpies in the emission inventory 1s to
examine the methodologies and assumptions for estimating emission and activity
factors in the exiting inventory .models. These studies of emission sources are called
"Bottom-up" studies, since they deal with individual components of the inventory .
models, which if they are correct, sbould résult in a total mmventory that may be
confirmed by ”'Top—down" aﬁalyses.

F‘or instance, one possible source for underestimation of motor vehicie

emissions is that the current MVEI model underestimates the contribution of "high-
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emitters." Several studies have been conducted by private investigators using a
remote-sensing device to measure CO emissions from vehicles (Bishop et al., 1989,
Stedman et al., 1991a, 1991b; Lawson et al., 1990). These studies all indicated that
about 10% of the vehicles were responsible for approximately 50% of the total CO
emissions.

These findings have been confirmed by govemment sponsored studies as well.
For instance, from the 1991 remote sensing study conducted by both CARB and
USEPA in southemn California, it was found that the highest 10% of CO-emitting
vehicles accounted for 58% of total CO emissions, while the highest 10% of HC-
emitting vehicles generated 65% of the total HC emissions from all sampled vehicles
(Stephens, 1994).

| In a 1989 roadside survey sponsored by CARB and the Bureau of Automotive

Repair (BAR), where 4,479 vehicles were randomly i‘nspected for emission control
devices and tested at no-load 1000 rpm 1dle conditions, it was found that 10% of the
vehicles were responsible for about 60% of the exhaust CQ emissions, aﬁd 10% of the
same fleet produced about 60% of the exhaust HC emis;ions. The results showed
only a weak relationship between high CO emitters and high HC emitters (Ashbaugh,
et al., 1990).

Another possible reason for underestimating ‘motor vehicle emissions is that the
current certified driving cycle, the Federal Test Procedure (FTP), does nbt cover high
o speed and acceleration ciomair;s, or high-load situations, such as entering freéways and -

climbing hills. Groblicki (1990) showed that HC and CO émissions from one "hard-
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acceleration" accounted for half of the total emission during a typical urban trip in a
late-model passenger car with proper emission controls. In another study by Groblicki
(1993), 1t was demonstrated that during a brief enrichment event CO emissions were
increased by a factor of 2500, and HC emissions by a factor of 46, over closed-loop
stoichiometric operations. Note that this sudden increase in fuel-to-air ratio
(enrichment) 1s designed to protect late model year vehicles against overheating of the
engine and catalyst during conditions of high power demand.
Similarly, St. Denis et al. (1994) found that a 1990 vehicle might emit nearly

as much CO during a hard acceleration onto a freeway as it does during the entire 11-

mile trip of the FTP in the laboratory. Figure 1.2.2.1 illustrates the speed and
acceleration operating envelope generéted by St. Denis' study. It is found that both
conservative and aggressive driving regimes have broader speed and acceleration
dOI.nains than the FTP. Relatively high accelerations and speeds have not been
included in the FTP because until recently, laboratory dynamometers were not
designed to simulate sﬁch driving modes. Hence, it is_critical to develop a new testing

procedure that simulates on-road speed and acceleration domains.

1.3 Goals of On-Road Emissions Modeis

Emissions reported in the mobile source inventory represent the best available
4estimates‘ of emission levels but do include some degree of uncértainty. A reasonable
mobile source emission imlzentory model should at least cover these five main

components: (1) Vehicle - such as vehicle's model year, vehicle weight, engine size,
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emission control technol.ogy,-accumulated mileage, the effectiveness of smog-check
program, the percent of high emitters in the vehicle population, and the effect of
heavy-duty vehicles and out-of state vehicles. (2) Behavior - such as the frequency of
hard acceleration on local streets and freeways, frequency of braking, and the
frequencg; of cold and hot starts of vehicles. '(3) Activity - such as the mileage accrual
rates, vehicle age distribution, vehicle sales distribution, the average distance travelled
per day, the frequency of stops or idling, and the number of trips per déy.

(4) Environment - the external factors such as ambient temperature, fuel, grade, wind
speed, air conditioning, load conditions. (5) Emissiops - the exhaust pollutants
including HC, CO, NOx, CO,, and particulate. In particular, HC from carburetor and
fuel delivery system through evaporative emissions when ‘Fhe vehicle 1s resting or
runﬁing must also be included. Furthermore, it is imperative to quantify the species of
| hydrocarbon as certain components in the HC exhaust pose health threats. For
exampAle, benzene, common in the exhaust emissions, 1s a well knowﬁ carcinogen.
Figure 1.3.1 illustrates the inventory estimation goal based on the above mentioned
components (Carlock, 1992).

To construct a model, one must have adequate information about all the
aforementioned components. Additional research is needed in order to obtain a better
understanding on how each component relates to the overall estimation of the mobile
source emission inventory.

The current MVEI model, while reﬂec't'irig'sig'niﬁcant progress in the subject .

area, also recognizes that more work needs to be done. To improve the mobile source
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inventory model, CARB is directing several studies to improve on-road emission
estimates. These studies include: (1) assessment of number of daily vehicle trips,
number of trips and trip length associated with older vehicles (Magbuhat, 1994); (2)
the development of a new ce;tiﬁed driving cycle, the Unified cycle, which covers a
broader domains of speed and acceleration (Gammariello and Long, 1993); (3) the
conceptual design of driving cycles pertaining to freeway and local traffic conditions
(Effa and Larsen, 1992); (4) the study of air-conditioning effects on exhaust emissions
(Parker, 1993); (5) the effects of grade and load on exhaust emissions (Cicero-
Feméndez and Long, 1994); and (6) thé frequency distribution of high emitters
(Carlock, 1993). The findings from these studies will likely be in.corpo-rated into the

futtre 'MVEI model.

1.4  The Development of Motor Vehicle Emission levent(;xy Model (MVEL)

To estimate the erﬁission inventery of all pollutants from mobile sources,
CARB has developed four computer models, known as Motor Vehicle Emission
Inventory models (MVEI): CALIMFAC, EMFAC, WEIGHT, and BURDEN (see
Figure 1.4.1). Each model is a critical component in the overall estimation of
emission inventory.

CALIMFAC (short for CALifornia I/M FACtor model) calculates Basic
Emission Rates (BER) of passengér cars, light-duty trucks, and medium-duty trucks
" both with and without the assumed benefit of "Smog Check." The BERs or

"baselines" are generated based on vehicle test data obtained from the Federal Test
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CALIMFAC Input E7EWT Input
Surveillance Fleet Data Vehicle Populations

Inspection & Maintenance Sales Fractions
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Mileage Accumulation
CALIMFAC Qutput | Vehicle Population,
Base Emission Rates for: | Vehicle Miles Travelled,
Inspection & and Trip Fractions
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non-I/M program EMFAC Input
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Concentrations in Fuel ‘ Calendar Year

Figure 1.4.1 CARB's motor vehicle emission inventory process (CARB, 1992a)
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Procedure (FTP).

Using the CALIMFAC .generated BERs as input, the EMFAC model attempts
to adjust the BER to non-FTP conditions. of speed, temperature, fuel, and other
parameters that the vehicles éncounter during normal operation. Much of the EMFAC
methodology is devoted to the handling of these correction factors. Testing is
performed at these non-staﬁdardized (i.e., non-FTP) conditions, and correction factors
of speed, temperature, fuel, and other parameters are generated to correct the BERs.

The WEIGHT program contains information on Department of Motor Vehicles
(DMV) registration distribution, mileage, attrition rates and other information
necessary to estimate the vehicle model year's specific contribution to the emission
inventory for a particular calendar year.

The BURDEN program contaix;s information necessary to convert emission
rates from grams/mile to tons/day. This information includes vehicle population, total

vehicle miles travelled (VMT), and trips per vehicle-day.

1.4.1 EMission FACtor (EMFAC) Model

The present dissertation‘ intends to test the assumptions made regarding the
correction factors in EMFAC. EMFAC can generate emission factors for various
calendar years, for two seasons (summer and winter), and for a variety.of
combinati_ons of pollutants, vehicle class/technologies, processes, speeds and
temperatures. EMFACTE, the latest version of EMFAC, ge‘nerate-s emission facfors for

‘calendar years 1970 through 2020. Each calendar year includes a fleet of twenty-five
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model years, except for passenger vehicles, which includes thirty-five model years.
EMFAC also calculates both summertime and wintertime emission factors. The reason
for seasonal emission factors is to reflect fuel vapor pressure (measured as Reid Vapor
Pressure or RVP) and differ;ances in fuel composition between summer and winter,

which will affect exhaust pollutants.

EMFACTF generates emission factors for the following pollutants:
+ hydrocarbon (HC) from exhaust
« hydrocarbon (HC) from evaporation
'+ carbon monoxide (CO) |
* nitrogen oxides (NOx) |
- particulate matter from exhaust

- particulate matter from tire wear

EMFACTF produces emission factors for the 13 different vehicle class/technology
combinations listed below:

« light-duty automobile/non-catalyst gasoline

« light-duty automobile/catalyst gasoline

« light-duty automobile/diesel

» light-duty trucks/non-catalyst gasoline

« light-duty trucks/catalyst gasoline

« light-duty trucks/diesel
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» medium-duty tfucks/non—catalyst gasoline

« medium-duty trucks/catalyst gasoline

* heavy-duty tr:uéks/non—catalyst gasoline

* heavy-duty trucks/catalys£ gasoline

. uheavy—duty trucks/diesel

» urban basés/diesel

* motorcycles/non-catalyst gasoline

In addition, EMFAC generates VOC emission factors for exhaust and

evaporative categories. Because of different modes of driving and starts, correction
factors are produced for three exhaust emission processes: cold starts, running exhaust,
and hot starts. EMFAC produces emission factors for the evaporative processes:
vaporizatio.n of fuel from the heat of the engine after it has been turmned off (hot soak),
vaporization of fuel from the fuel system while the engine 1s operating (running loss),
vaporization of fuel within fuel system caused by the rise of daily ambient temperature
(diurnal losses), and vaporization of fuel within fuel system caused by the fall of daily
ambient temperature (resting losses).

Though many correction factors were developed in the EMFAC model, the
focus of the present dissertation is to examine the fundamental concept that the
baseline exhaust emissions can be corrected to different temperatures, fuels, and speeds
through a; set of "correction factofs." According to EMFAC (CARB, 1993a & 1993b),
the general emission factor equation for a given poliut.an't, ‘v'e'hi'c}e class, technology |

group, and calendar year 1s given by equation 1:
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EF = Z [BER x BCF x TCF x SCF x FCF x TP],, (Eq.1)

my=1
where,
EF = emission factor
- BER = basic emission rate
BCF = bag correction factor
TCF = temperature correction factor
SCF = speed correctioﬁ factor
FCF = fuel correction factor
TP = travel fraction of the vehicle population
my = model year
In the following section, the principles in deriving TCF, SCF, FCF and BER will be
explained briefly.
Basic Emission Rates (BER)

Basic emission rates are estimated through analyses of emission data collected
in ARB's on-going vehicle testing programs. These programs include: In-Use
Surveillance, High-Mileage Surveillance, and Inspection/Maintenance Evaluation.
Currently, the emission factor database is comprised of test data for over 5,000
vehicles tested by the Federal Test Procedure (FTP). The FTP, developed in 1972, 1S
a driving cycle of approximately 11 miles in length with an average speed of 19.6

mph. The cycle consists of three phases '(or bags) including a cold start (Bag 1),
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stabilized driving (Bag 2), and hot start (Bag 3). During the test the vehicle is
exercised over a series of accelerations, decelerations, idles, and cruises designed to
simulate a typical trip in a Los Angeles urban area. The mass emissions of HC, CO,
and NOx are collected by phése and then weighted, thereby yielding a composite
emission rate.

A statistical analysis is performed on the emission data to divide the fleet into
+ technology groups which display unique emissions characteristics. The known or
projected sales of: vehicles utilizing each significant technology is then used to weight

the data into model year specific, composite emission factors.

1.4.2  Denvation of Speed, Temperature, and Fuel Comection Factors

In this section, the speed, temperature, and fuel correction factors will be
briefly described. In general, these correction factors are derived through regression
analysis on the testing data from both USEPA and CARB.

Speed Correction Factor (SCF)

In EMFACTF, the most rgcently released version of EMFAC, speed correction
factors were updated for catalyst-equipped passenger cars, light duty trucks, and
medium duty trucks. Speed correction factors are used to correct the running exhaust
emissions at 16 mph (FTP-Bag2) to other speeds.

Data from tests conducted by USEPA and CARB of 746 vehicles over different
speed cycles were used to develop the SCF for EMFACTF. The average spéeds range

from 2.5 mph to 65 mph from these cycles. The SCF for a particular speed cycle at
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its average speed (s) is defined as:
SCF(s)=mean ER(s)/mean ER(16 mph) . (Eq.2)

where (s) is the evaluation speed and ER is the emission rate at either the evaluation
| speed or at 16 mph.

The analysis was performed by first calculating the mean emission level and
the mean baseline emissions (at 16 mph) of vehicles tested at each speed. The ratio of
the means was then calculated. Finally, for each technology group, a curve fit analysis
was performed on the ratio of the means, weighted by the number of observations at
each speed. A trial and error approach was utilized in selecting the general equations.

For HC or CO, the .equation developed 1s:

SCE(s)=EXP{ A*(s-16) + B*(s-16) + C*(s-16)> + D*(s-16)*} (Eq.3)
For NOx, the equation is:

SCF(s)={A*(s-16) + B*(s-16)* + C*(s-16)> + 1}*16/s | (Eq.4)
Where the A, B, C, and D are the regression coefﬁcient from the above equations.

Temperature Correction Factor (TCF)

Temperature correction factors (TCFs) are used to adjust the basic emission
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rates for conditions outside the FTP (75 F). The database was.generated through
various vehicle testing programs from USEPA and CARB. Approximately 2700
vehicles were tested over the FTP at 20 F,50F 75F, and 95 F and the baseline
emissions are determined at each temperature level. Since the database is derived
from different testing programs, the sample size is not evenly distributed for each
temperature. For instance, about 2200 vehicles were tested at 75 F. The TCF at a

particular temperature is defined by the following equation.
TCF (T) =mean ER (T)/mean ER(75) (Eq.5)

where T 1s the evaluation temperature and ER is the emission rate at either the
evaluation or standard temperature. The significant technology grdups were determined
to be carbureted and fuel-injection vehicles. Similar to the SCF estimation, a curve fit
analysis was performed on those ratio of means, weighted by the number of

observations. The general equation for HC, CO, and NOx is as follows:
TCF (T) = A*(T-75) + B*(T-75)* + C*(T-75)" + 1 (Eq.6)

Fuel Cormrection Factor (FCF)
The BERs were determined using conventional gasoline pfior to the
introduction of reformulated gasoline in 1992. The fuel correction factors adjust the

BERS to reflect the benefits of Phase 1 fuel (both summer and winter grade) for the '
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calendar year of 1992-95 and Phase 2 fuel for the calendar years 1996 and beyond.
The database used to estimate t-he fuel correction factors, was de}’ived from
independent studies of the petroleum industries, as well as joint studies of ARB with
the petroleum industries. Thése studies provided FTP emission test data for 66 vehicles
fueled with Phase 1 and Phase 2 gasoline (Carlock, 1992).

The percent reductions were calculated for each vehicle and their means were
calculated within each technology grouping (e.g., non-catalyst, catalyst with carburetor,
or catalyst with fuel injection) for the respective fuel comparison. The general equation
for FCF (in percent reduction) due to the reformulated fuel for HC, CO, and NOx

emissions is defined as:
Percent Reduction = (reformulated fuel/base fuel - 1)*100 (Eq.7)

where a negative or positive value implies a.decrease or Increase, respectively, in
emissions as a result of reformulated fuel. Since the use of reformulated fuel went
mto effect only after 1992, fdr pre-1992 calendar years the FCFs default to 1.00 since
no emissions benefit 1s expected.

Two sets of FCFs were developed for HC, CO, and NOx based on the calendar
year from which the emission inv.entory for that year calculated. The first set of FCFs
is used to reflect the benefits of Phase 1 fuel for the calendar year 1992-95 while the
second set of FCFs 1s used to reflect the benefit of Phase 2 fuel for the calenaar years

1996 and beyond.
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1.4.3 The Assumptions Used in EMFAC

In the state's current official version of the EMFAC7F model, BERs are
determined through the FTP.: To adjust for factors not included in the FTP conditions,
such as vehicle type, fuel type, speed, etc. correction factors are applied to the BERs.
Three of the most significant factors relative to achieving accurate FTP corrections are
vehicle speed, temperature, and fuel. However, the use of these corrections are based
on two critical assumptions:

1). There are neither synergistic nor antagonistic effects for any of the

correction factors on non-FTP emission rates; and

2) The effects of the correction factors are independent of vehicle operation

characteristics.

1.5 Objectives

A variety of studies sponsored by industry or government have investigated the
effects of fuel, temperature and speed cycle separately on exhaust emissions. For
instance, the Auto/Oil Air Quality Improvement Research Program, a cooperative
program 1nitiated by the three major auto companies and fourteen petroleum
companies, 1s evaluating the effegts of gasoline composition on emissions from current
and older vehicles. This program, the largest and most comprehensive project of this
nature ever attempted, has compiled data to assist industry finding fuel/vehicle system
options that will help meet the nation's clean air goal (Society of Automotive

Engineers, 1993). The USEPA has also investigated the effects of temperature and
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fuel as related to exhaust emissions (Stump et al. 1989, 1990a, 1990b, 1990c, 1992a,
1992b, 1994), as well as the alternative fuels such as compressed natural gas and
methanol (Gabele et al, 1990a, 1990b). Furthermore, in an attempt to improve the
current-speed correction methodologies, CARB has de.veloped new speed cycles that
reflect freeway and local traffic conditions (Effa and Larsen, 1993).

Though there have been numerous studies investigating the effects of fuel,
temperature, and driving cycles on exhaust and evaporative emissions, their scopes
have been limited. In fact, most of the fuel and temperature studies were based on the
FTP with emphasis on exhaust hydrocarbon speciation.

While the speed, temperature and fuel correction factors were developed from
different databases, the underlying assumptions for such an approach have Inever been
scrutinized. There does not exist a comprehensive experimental approach to study the
effects of speed, temperature, and fuel effects on exhaust emissions. It is the intent of

_this study to examine the approach of using correction factors to adjust the basic
emission rates in the EMFAC model, and to test the assumptions in the EMFAC
model conceming speed, temperature, and fuel correction factors.

The principal objective of this dissertation is the comprehensive examination of
the effects of speed, temperature, and fuel on exhaust emissions, in particular, the
interaction effects among speed, temperature, and fuel, if any. Other objectives
inclﬁde: (2) the identification of new factors which have the potential to affect
emissions, (3) the comparison of Phase 1 and Phase 2 fuel on exhaust emissions, (4)

the evaluation of temperature effects on the cold start of vehicles, and (5) the
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comparisgh of relative contribution of speed, temperature, and fuel factors to exhaust
emissions. The findings from this study could dictate future research strategies, and
allocate resources to areas that require more in-depth research.

Eleven passenger vehicles were procured based on three fuel delivery systems,
namely, three with carburetor, three with throttle body injection, and five with multi-
port fuel injection. Ten speed cycles with average speeds ranging from 2.5 mph to
64.4 mph were selected. This wide range of speed cycles encompasses various on-
road driving conditions, from congested local traffic to free-flow freeway conditions.
In addition, tﬁree temperature profiles (50 F, 75 F, and 100 F) and three fuels (Phése
1, Phase 2, and Indolene) v‘;rere selected. Thus, a minimum of 90 tests were conducted
for each vehicle.

It is expected that this proposed research will lead to a better understanding of
emission inventory methodologies, which will assist CARB in formulating balanced air

pollution control strategies.
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CHAPTER 2
EXPERIMENTAL

2.1 Facility Description

Automotive Testing aﬁd Development Services, Inc. (ATD'S) was selected by
the CARB as the sole contractor responsible for vehicle procurement, fuel
procurement, vehicle testing, and déta collection under close supervision from CARB.
The ATDS testing facility located in Ontario, California consists of 25,000 square feet
of laboratory, offices, and service space. ATDS has been in the vehicle testing
business for over two decades and has vehicle testing experience from projects
sponsdred by major vehicle maﬁufacturers, USEPA and CARB. ATDS also has the
state-of-the-art vehicle emissions test system, namely the Horiba VETS 9200, that
oversees the operation of dynamometer, constant volume sampler, exhaust gas
analyzers, and data management. Figure 2.1.1 illustrates the test configuration for the

present study. Each component will be described in the following sections.

2.1.1 Dynamometer Cells

There are two chassis dynamometer test cells with variable inertia flywheel
systems ranging from 1750 1bs to 9625 Ibs in 125 Ib increments. In addition, each
dynam.ometer is equipped with a lroad load power control. The purpose of the
flywheels and load braking system is to provide a realistic simulation of load
conditions on the road. The flywheels and brakes are set in accordance with the type

of vehicle to be tested. A video monitor that displays the speed profile for the driver
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to follow 1s adjacent to the chassis dynamometer. Because of the absence of air
movement across the vehicle during test driving on the dynamometer, a ﬁowerful fan
is used to blow air at the front end of the vehicle, éimulating the cooling effect of the
wind through the radiator while driving. ‘The position of the chassis dynamometer is
such that both front and rear wheel drive vehicles fit well in the cell. In this study,
only test cell No.1 was used, which houses a Clayton EC 50 dynamqmeter.

The cell temperature control 1s achieved by two air conditioning systems. The
first one is a conventional system with both heating and cooling functions, and is used
primarily for heating up the cell. The second unit contains only an air coﬁditioning
system capable of cooling to temperatures below freezing. In general, the temperature
in the cell is kept between 40 F to 120 F. There is also a humidity control in the test

cell.

2.1.2  Vehicle Soak Area

In order to simulate the cold start and hot start testing modes, it 1s first
necessary to "soak" the vehicle at the specified test temperature “for at least 12 hours
prior to testing. The soak temperature is controlled by five individual air conditioning -
units and is typically set between. 70 F and 74 F. Soak temperatures outside this range
are accomplished by special refrigerated and heated shipping containers. The ATDS
maintains four of these containers and each is capable of soaking a vehicle from -5 F

to 120 F. The soak area in ATDS is about 8,000 square feet.
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213 Constant Volume Sampler (CVS)

The-CVS 1s a ﬁoriba' model CVS-48/RS. This unit includes three user
selectable volumetric flow rainges, a remote mixing tee, and a dilution air flow
measurement system to calculate the exhaust volume for modal a'nalysis. Moreover, it
contains a 10 HP blower, and a 350 cfm Venturi module with Teflon bag sampling
components, and a three stage background air filter 1s used to preserve the quality of
the intake air. Exhaust emissions from the tailpipe are mixed and diluted with intake
ambient air in the mixing chamber of the CVS and the flow rate exiting the CVS unit
is kept at 350 ¢fm. A portion of the diluted emissions is collected‘ with the Teflon
bags, with the other stream of diluted emissions going directly to the Qn-line gas
analyzers. Stainless steel is used throughout the sampling system. .All the CVS

functions are controlled by the Hortba VETS 9200 hardware.

2.1.4 Bag and Meodal Data Sampling

The exhaust analytical syétem.gse.d for this project is a Horiba s.eries 200 gas
.analysis console. This system 1s éapagle of measufing total HC, non-methane organic
gases (NMOG), CO, CO,, NOx, both at léw and high ranges as well as recording data
from the gas analyzers.

Under the modal (second-by-second) sampling mode, exhaust gases are
continuously pumped to the analyzers from the CV‘S. Before the test begins, the
computer zero/spans all ranges of the analyzers to ensure accurate readings duﬁng the

tests. During the test, the system automatically switches the analyzer range in order to
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obtain the most accurate readings possible.

While modal data are being collected during the test, bag data are collected at
the end of the test. During each tést the system fills one pair of bags, i.e., one Eag
with dilute exhaust and the o%her with ambient air. After the test is co‘mpleted, the
pair of bag samples is analyzed immediately. The system begins the analysis
sequences by evaluating a small portion of the collected exhaust sample. Based on the
results of this “sniff," the computer selects one range of each analyzer to be used in
analyzing the full sample.

Analyzer response to gas concentrations changes gradually or "drifts” over
time. This analytical system mathematically corrects for drift by measuring analyzer
response to zero-grade gas and then span gas (at or near full scale), comparing the
response to similar measurements taken when tﬁe analyzer was calibrated, and
calculating factors of offset and gain. The zero/span calibration is included in every

test that involves the analyzer to ensure the analyzer 1s fully operational.

2.1.5 Computer Control

The VETS 9200 test controi software which utilizes a Hewlett Packard 9000-
series model 425S computer Workstation, is the central control system. It controls
equipment in the cell, regulates the sequence of events in the test, displays the graphic
driving schedule, relays instructions to the driver, collects the data, calculates and
reports emissions levels and other test results. The system acquires data from two

types of sources: input signals from the sampling and analysis devices (e.g.
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dynamometer, analyzer, CVS) and cell parameter tables stored on the system disk.

The system software incl‘udes calibration prégrams— for the analyzers, various
analog devices, and CVS. Results from the calibration are stored in several cell
parameter tables. F.or instance, the Analyzer and Signal Calibration Program assists in
calibrating gas analyzers and system analog signals, such as CVS temperature and inlet
pressure, and auxiliary signals. The system records the calibration results in the cell
parameter tables. In addition, the CVS calibration program collects the data needed to
calculate flow rate from temperature and pressure readings at the critical flow venturi
in the CVS. Furthermore, whenever the span bottle>for an analyzer range is changed,
a new span concentration must be entered in the cell parameter téble describing that

analyzer range.

2.1.6  Quality Control of the Instrument

All calibration and test data are checked by a quality auditor to ensure that the
procedures have been correctly followe_d and the data are recorded and transcribed
correctly. Routine periodic calibrations are performed as required by the Code of
Federal Regulations. Calibrations or calibration checks are perforﬁd_ed aaily, weekly,
and monthly depending of the type of the instruments.

All analytical instruments are calibrated with gases traceable to the National
Bureau of Standards. Traceability is certified by Scott Environmental Technology,
Inc. All the analytical instruments are calibrated at 7 points (including zero) across

each range using a precision gas divider. Calibration tolerance is £ 2% of each point



from the least square regression line.

ATDS regularly participates in correlation testing including the Calibration Gas
Reference Service provided by Scott Environmental Technology, Inc., and periodic
correlation vehicle tests which provide cross checks between major manufacturers,
USEPA's Ann Arbor laboratory, and CARB. More importantly, CARB periodically
sends technicians to inspect and cross-check the testing system at ATDS, from the
dynamometer test cell to the analytical instrument streams, to ensure the quality of the

data.

2.2 Test Vehicle Procurement

One of the major challenges in this study was the selection of the
"representative” vehicles that could reflect thé vehicle fleet under the constraints of
small sample size where n=11. Obviously, the greater the sample size the more
representative it is of the vehicle fleet. In general, to choose a representative fleet of

vehicles, the following parameters should be considered (Thu Vo, 1992):

1. Emission control system type

N

. Emission technology level

3. Vehicle registration {quantity)

I

. Engine type, size and sales weighted volume

5. Vehicle manufacturer
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lAII the above factors could directly or indirectly affect the quality of the experiment
design. For instance, older vehicles tend to have higher emissions due to the wéaring-
~out of parts. The EMFAC7F model has adopted three tecfmology groupings as the
basis for the emission correc%ion factor analysis kCARB, 1992) and this is the basis on
which the selection of the eleven vehicles was made in the present study.

In this study, the vehicles were representative of the following categories:

Fuel Delivery System : Number of Vehicles
Multi-Port Fuel Injection (MPFI) 5
Throttle Body Injection (TBI) | 3
Carburetor (CARBU) | 3

Other guidelines were also adopted to ensure that the selected vehicles were
representative of the general fleet. In particular, the baseline FTP emissions-should be
no greater than four times the applicable vehicle emission standards.. In addition, each
vehicle selected reflected typical mileage accrual rates (between 8,000 to 12,000 miles
per year). Based on the above criteria, eleven vehicles were selected and are presented
in Table 2.2.1.

Finally, prior to the final procurement of the vehicles, each vehicle was
inspected thoroughly to ensure that it was in good opergting condition for testing.
Ttems that may destabilize the performance of the vehicle testing, such as cracked

hoses, excessive oil consumption, fluid leakage, and other destabilizing factors, were

41



Table 2.2.1 Description of test vehicles,

Multi-port Fuel Injestion

Make/ Style

Year

Mileage

No. of cylinders
Displacement (f)
Fuel delivery system
Catalyst

Incriia weight

Road horse power
Adaptive leaming

Throttle Body Injection Group

Make/ Style

Year

Mileage

No. of cylinders
Displacement (I)
Fuel delivery system
Catalyst

[nertia weight

Road horse power
Adaptive leaming

Carburctor Group

Make/ Style

Year

Mileage

No. of cylinders
Displacement (1)
Fuel delivery system
Catalyst

Incrtia weight

Road horse power
Adaptive leamning

Lincoln Town Car
90

42360

8

5

MPFI

TWC/OX

4250

9.9

Yes

Continental MRKVII
85

80990

8

5

TBI

TWC

4000

9.1

Yes

Chevrolet Impala
79

114265

8

5.7
CONV.CARB
OX

4000

133

No

Oldsmobile
92

16667

6

© 38
MPFI
TWC

3750

6

Yes

Cadillac Sedan
36

104741

8

4.1

TBRI

TWC /10X
4500

3

Yes

Buick Regal
82

85274

6

38

ELEC. CARB
TWC

3625

103

Yes

Toyota Paseo Mercury Topaz Ford Taurus

92
22209
4

1.5
MPFI
TWC
2375
52
Yes

Dodge Daytona
38

36088

4

2.5

TBI
TWC/0OX
3000

6.3

Yes

Honda Accord
83

107014

4

1.8

CONV. CARB
0OX

2750

7

Yes

89
39737
4

23
MPFI
TWC
3000
7.3
Yes

92
37887
6

3
MPFI
TWC
3500
6.8
Yes

MPFTI - Multiple Point Fuel Injection

TBI- Throttle Body Injection

CONV. CARB - Conventional Carburetor
ELEC. CARB - Electrical Carburetor

TWC - Three Way Catalyst
OX - Oxidation Catalyst
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checked and corrected prior to the testing.

2.3 Test Cycles

Ten speed cycles weré chosen for this study. The average speed of tﬁese
cycles ranges from 2.5 mph to 64.4 mph. In general, the speed cycles such as Low 1,
Low 3, New York City Cycle (NYCC), and Speed Correction Cycle-12 mph (SCC-
| 12), with average speeds ranging from 2.5 to 12 mph, depict driving condiﬁons in a
congested traffxc environment on local streets, where vehicles tend to stop and idle
more frequently. Table 2.3.1 lists the characteristics of each speed cycle. The speed
time trace of each speed cycle is presented in Figures 2.3.1 to 2.3.10, respectively.
Except for the Unified Cycle (UC), also known as LA92, all other speed cycles were
also used in the development of speed correction factors.

Speed cycles such as the Highway Fuel Economy, Cycle (HHWY), U Highway
Cycle (UHWY), W Highway Cycle (WHWY), and X Highway Cycle (XHWY), with
average speeds ranging from 45 mph t-o 64.4 mph, represent -typical freeway driving
conditions. In fact, the UHWY, WHWY, and XHWY cycles were derived from a
ségment of HHWY and have the same speed-trace pattern as the HHWY but with
different average speeds.

The FTP and the UC ére the only two cycles that consist of 3 bags. In both-
cycles, there are three operating modes, namely, cold start (Bag 1), hot running (bag
2), and hot start.(bag 3). The UC, also known as LA92, was derived from the results

of instrumented vehicle chase-car studies in Los Angeles in 1992, and utilizes 833
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"microtrips." The microtrips were joined together to represent a "typical" driving
cycle (Austin, 1993). Compared to the FIP, the UC definitely covers-a broader
domain of speeds and accelerations. In the present study, only the FTP has a cold

start mode while the UC has a hot start mode for both Bag 1 and bag 3.

2.4 Fuel Specifications

The fuels (Phase 1, Phase 2, and indolenej used in this study were supplied by
Howell Hydrocarbons & Chemicals, Inc. Three-hundred and thirty gallons of each
type of fuel was ordered. To confirm the fuel specifications as svtated by the supplier,
the fuels were analyzed by ARB'S laboratory in El Monte. Moreover, before each
drum was opened for use, a sample was collected from the drum and analyzed for
RVP. Table 2.4.1 summarizes the fuel specifications of Indolene, Phase 1, and Phase
2 fuel.

Phase 1 fuel was implemented in California in 1992 and is available in summer
grade (without oxygenates) and winter grade (with Qxygenates). The purpose o'ft _
adding oxygenates to the winter grade Phase 1 fuel is to reduce the carbon mon.(.)xide
exhaust emissions. In addition, Phase 1 fuel includes the elimination of lead and the
addition of deposit control additives. Note that the summer grade Phase 1 fuel was
used in this study.

~ Phase 2 fuel, proposed by the CARB, will be available in 1996. It has more

stringent requirements, such as further reduction of RVP, addition of oxygenates year

round, reductions in sulfur, benzene, aromatic hydrocarbens, and olefin content, and
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the reduction of distillation temperature. Phase 2 fuel is designed to achieve the
maximum reductions in emissions of criteria pollutants and toxic air contaminants,
such as benzene. More importantly, because of the lower RVP, évapo.rative
hydrocarbon emissions will se significantly reduced. This C(;uld have major
implications for reducing hydrocarbon emissions from vehicles, as it is estimated that
approximafe 30% of total motor vehicle hydrocarbon emissions 1is the result of
evaporative emissions (CARB, 1993b).

In general, the specifications for Phase 1 and Phase 2 fuels contain only the
“cap" limits which cannot be exceeded throughout the gasoline distribution system.
The actual composition of Phase 1 fuel that is available in the market varies among
the suppliers. Indolene is a standard industrial fuel and its fuel specification 1s well
defined and standardized. Indolene is mainly used for certified testing of new or in-
use vehicles to check whether they meet.the emission standards.

The detailed speciation of each fuel is presented in the Appendix. The purpose
of using these three fuels is to compare the fuel effects on exhaust emissions, in_
particular, and to examine the net benefit of Phase 1 and Phase 2 fuel_s as predicted by

the EMFAC model.
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2.5 Test Muatrix and Test Procedures

Each of the eleven vehicle was teéted with three fuels (Phase. 1, Phase 2, and
Indolene), at three témperattires (50 F, 75 F, and 100 F), and through ten speed cyclhes
resulting i.n a total of 990 te;ts or 99 sequences (each sequence contains ten speed
cycles) for the eleven vehicles. In other words, each vehicle had 9 sequences of tests.
After the initial 990 tests were completed, each vehicle repeated one sequence at 75 F
with indolene to evaluate the variability of the tests. During the repeated tests, the
catalyst efficiency of each vehicle was also evaluated. Table 2.5.1 presents the test
matrix including fuel, temperature, and vehicles.

The dynamometer cell at ATDS is capable of maintaining an ambient
temperature between 50 F to 100 F. Prior to tesﬁng, each vehic.le‘ was visually
inspected, including engine oil, radiator coolant, brakes, and tire pressure. Fuel was
then added to 40% of the fuel tank capacity. The vehicle was then soaked for no less
than 12 hours and no more than 36 hours at the testing temperature.

The FTP was always the first test in each sequence.because Bag 1 is a cold
staﬁ. The remaindgr of the 9 tests in each sequence We;elrandomized.' All subsequent
nine tests were separated by a pre-conditioning cycle of ﬁye minutes. Each sequence
generally tock a few hours to complete. Depending on the daily testing schedule, up
to two sequences could be completed each day. The drivers for this study were
trained and required to follow the speed-trace shown in the monitor. Any test that had
violations due to the mismatch of actual speed trace to the designated speed trace in

the monitor was aborted. Note that the acceptable margin of error from the actual
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speed trace is £ 2 mph.

Recent experiences at ATDS had suggested that some vehicles éosses‘sed
"adaptive leamning" capability, which allowed the' vehicle to recalibrate itself during the
changeover of fuel type. That is, vehicles will "leam" to compensate for the presence
of an oxygenate in the fuel. This compensation usually results from the trimming of
fuel delivery algorithms as a function of composite oxygen sensor activity. The time
required to accomplish this "trimming" activity varies widely even within a single
manufacturer's model and with model year. To eliminate this bias due to fuel
exchange, each vehicle was turned off a few times in order to reset the algorithms
after the fuel exchange. This was followed by twice running the FTP to eliminate any
previous fuel residuals in tﬁe system, and to ensure the vehicle "adapted" to the new

fuel.

2.6 Data Collecﬁon.
The Horiba VETS 9200 system was also used for data storage. It contained a .
500 Mb hard disk for data storage. There was also a laboratory datalogger system for.l
backup. The standard sampling rate for the Horiba VETS 9200 was 5 Hz
The Horiba VETS 9200 could accommodate a wide variety of signal types and
sources. The range included most common typ.es of signals, including aralog to
IOIO V,; digital event level to 1 MHz; frequency to 25 kHz; thermocouples (all types);
and current in milliamps. For sampling outside these ranges, special signal

conditioners could be used to adjust the ranges to acceptable limits.
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The data collected in this study included a combination of analog, digital and
thermocouple signals. The entire data file was stored as raw data in the Horiba VETS
9200 and could be retrieved as ASCII files. The raw data were downloaded onto 3.5"
floptical disk with 21 megabytes storage capability.

Prior to the start of each single test, the analytical instruments were checked
and tested for their reading range. Background readings including HC, CO, NOx,
CO,, wet bulb temperature, dry bulb temperature, and barometric reading were
recorded.

After completing the required number of tests, second-by-second mass exhaust

“data as well as bag emissions data were collected. The modal emissions data included
instantaneous vehicle speed, engine rpm, exhaust gas.oxygen content, catalyst
temperature, and concentrations of HC, NOx, CO, and Ct)z. Each test data set
included the test information of run number, speed cycle, start/end cell femperature,
fuel type, and bag emission data for HC, NOx, CO and CO,. Modal data of each test
were adjusted for any time delays (such as exhaust gas transportation time and sensor

response time) so that all values in each record were standardized to real time.
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CHAPTER 3
RESULTS AND DISCUSSION
3.1 Data Analysis |

This chapter presents-the exhaust emissions data (gram/milej from the test
results of 11 vehicles. Each vehicle was tested over nine sequences (each sequence
consisting of 10 test cycles) with a cdmbination of three temperatures (50 F, 75 F, and
100 F) and 3 fuels (Phase 1, Phase 2, and Indolene). Upon completion of the initial
nine sequences for each vehicle, data were evaluated-before advancing to the 10th
sequence or repeated sequence (75 F, Indolene). Thus, there was a brief idling period
ranging from one tq seven months between the 9th and 10th sequences, depending on
the testing schedule of each vehicle. Note that "speed” in this chapter was defined as
the average speed of each cycle, and could also refer to the specific cycle.

Due to the variation in experimental factors, such as speed, temperature, fuel,
and vehicle, the emissions data spanned up to six orders of magnitude. Two-
dimensional graphs were usea to illustrate the relationships between any two particular
factors. Since each distribution of HC, CO, and NOx exhaust emissions appeared
skewed to the right and was not normally distributed, they ‘were plotted using a
logarithmic (base 10) scale. Most emissions data were presented as box plots since
these provide the advantage of displaying the trend and shape of the distribution as
well as the median, minimum, maximum, and lower and upper quartiles. To examine
the effect of fuel delivery technology (i.e., MPFI, TBI, and CARBU), data were

agoregated based on technology groups and all 11 vehicles combined.
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Note that one sequence (100 F and Indolene) from the 1992 Oldsmobile was
excluded from the data analysis due to malfunctioning of the oxygen sensor; Section
3.2 explains this problem in detail. While the FTP was the only test including cold
start mode (vehiclé was soaked at the_ testing temperature for at least twelve hours
prior to testing), the remaining nine test cycles were conducted in the hot stabilized
condition. In order to obtain ﬁeaningful data analysis, the conditions at which
vehicles were tested should be similar, therefore, FTP Bag 2 (hot stabilized mode) was
used for most of the data analyses. |

Besides comparing emissions data through graphical representations, statistical
methods were employed to gnalyze the data. One-way analysis of variance (ANOVA)
was used £o evaluate: (1) the temperature effects within each fuel type, (2) the fuel
effects within each temperature, (3) the temperature effects within each cycle, and (4)
the fuel effects vlvithin each cycle.

Student-t tests of paired samples was used to test: (1) the difference between
exhaust emjssions due to Phase 1 and Phase 2 fuel for all vehicles, (2) test
, repeataﬁility of the sequence (75 F and Indolene) of each vehicle, and (3) the effect of
Bag 1 and Bag 3 on FTP and UC, respectively. Moreover, principal component
analysis (PCA) was used to explore the correlations between the dependent and
independent variables. Finally, three-way ANOVA was used to investigate the

interaction or synergistic effects between speed, tempefature, and fuel type.
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3.1.1 Comparison of Fuel and Temperature Effects

This section graphically presents the relationship of fuel and temperature effects
on HC, CO, and NOx exhaust emissions while keeping ‘othe;'r factors (vehicle and
cycle) constant. That is, onI-y the relationship of terﬁperature and fuel was evaluated
despite the possible effects from both the vehicle and cycle factors. For example, of
the 270 data sets in CARBU (3 vehicles x 3 temperatures x 3 fuels x 10 cycles), the
vehicle and cycle factors were held constant so that the fuel or temperature effects
could be examined.

The effects of fuel and temperature were examined based on the. three
technology groups MPFI, TBI, CARBU and all 11 vehicles as a group. Figures
3.1.1.1 to 3.1.1.1.3»present the effects of fuel and temperature on HC, CO, and NOx
exhaust emissions in the MPFI group. Sincé the data used for comparison
encompassed ten cycles and five vehicles, there were 50 data per box plot. . The wide
range of distribution in each box plot is due to vehicle-to-vehicle and cycle-to-cycle
variation. In general, when examining fuel and temperatﬁre effects, 1t 1s difﬁcul;c to
discern a clear pattern of fuel or temperature effects. Nevertheless, it appears that HC,
CO, and Ndx exhaust emissions due to Phase 1 fuel are slightly higher than those due
to Indolene and Phase 2 fuels based on the data distribution when temperature is held
constant. The same relationship was not observed when examining the temperature
effect while the fuel factor was held constant.

Figures 3.1.1.4 to 3.1.1.6 illustrate the distribution of HC, CO, and NOx

exhaust emissions for various combinations of fuel and temperature in the TBI group.
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Figure 3.1.1.1 Box plots showing the effects of fuel and temperature on HC exhaust emissions (MPFD. Each
box plot'includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, S0th, and 95th percentiles.
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Figure 3.1.1.2 Box plots showing the effects of fuel and temperature on CO exhaust cmissions (MPFI). Each
box plot includes the minimum, maximum, Sth, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.3 Box plots showing the effects of fuel and temperéture on NOx exhaust emussions MFFL). Each
box plot includes the minimum, maximum, Sth, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.4 Box plots showing the effects of fuel and temperature on HC exhaust emissions (TBI). Each
box plot includes the minimum, maximum, Sth, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.

61



CARBON MONOXIDE (TB!)

Indolene Phase1 Phase?2
1000
. . [ .
a
© 10 5:'1 fIT
-E l I-;J :
[e] r 1
! =
* a
0.1 Y 0 hd
[ ]
a
0.01
@) o) o o w o o T} o
w ~ Q 0. ~ o o B~ Q
Temp (F)

Figure 3.1.1.5 Box plots showing the effects of fuel and temperature on CO exhaust emissions (TBI).
Each box plot includes the minimum, maximumi, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.6 Box plots showing the effects of fuel and temperature on NOx exhaust emissions (TBI).
Each box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Each box plot contains 30 data poin.ts based on three vehicles and ten cycles. From
the distribution of the box plots, it was evident that both fuel and température had
minimal effects on HC, CO, :and NOx exhaust emissions.

Figures 3.1.1.7 to 3.1.1.9 display the distribution of HC, CO, and NOx exhaust
emissions for variou; combinations of fuel and temperature in the CARBU group.
Each box plot contains 30 data point; (3 vehicles x 10 cycles). Similar to the
previously mentioned MPFI and TBI groups, fuel and temperature appear to have
minimal effects on HC, CO, and NOx exhaust emissions.

All 11 vehicles were also examined for the fuel and temperature effects on HC,
CO, and NOx exhaust emissions as shown in Figures 3.1.1.10 to 3.1.1.12, where each
box plot column contains 110 data (11 vehicles x 10 cycles). The conclusion remains
the same as described above, that is, both fuel and temperature appear to have a
minimal effect on HC,.CO, and NOx exhaust emissions based on all ten cycles.
Nevertheless, it was observed that CO emissions had the greatest variation with a
range covering approximately six orders of magnitude, while HC and NOx emissions
spanned appro;;imately five and three orders of magnitude, respectiv?ly. This implies
that CO emissions exhibit higher varniability than both HC and NOx emissions.

The temperature and fuel effects, if any, could not be seen clearly from the
above 12 figures. This was likely the result of cycle-to-cycle and veh.icle%o-'vehicle
variation b>eing greater than and masking the true effects of f:uel and temperature.
Figure 3.1.1.13 offers an alternative way of presenting Figures 3.1.1.10 to 3.1.1.12 by

showing the 95% confidence interval of the population mean of HC, CO, and NOx.
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Figure 3.1.1.7 Box plots showing the effects of fuel and temperature on HC exhaust emissions (CARBU).
Each box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.8 Box plots showing the effects of fuel and temperature on CO exhaust emissions (CARBU).
Each box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.9 Box plots showing the effects of fuel and temperature on NOx exhaust emissions (CARBU).
Each box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.10 Box plots showing the effects of fuel and temperature on HC exhaust emissions for all vehicles.
Each box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 50th, and 95th percentiles.
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Figure 3.1.1.11 Box plots showing the effects of futel and temperature on CO exhaust emissions for all vehicles.
Each box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.12 Box plots showing the effects of fuel and temperature on NOx exhaust emissions for all vehicles.
Each box plot includes the minimum, maxtmum, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.
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Figure 3.1.1.13 Comparison of temperature and fuel effects on the 95% confidence
interval of mean HC, CO, and NOx for all vehicles.
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Note that the 95% confidence interval of the population mean was estimated by using
the sample mean & 1.96 times the standard error. Examining the data from this
perspective suggested that the HC,  CO, and NOx exhaust emissions due to Phase 2
and Indolene were generally ‘lower than Phase 1 fuel.

To substantiate the findings from the graphs, statistical tests were used. The
one-way ANOVA was used to compare whether there were any differences among the

box plots in each group. The test hypotheses were as follows:

Ho: All sample means are the same.
Ha: At least one of the means differs from the others

where «=0.05

Table 3.1.1.1 presents the p-values based on the comparison of temperature effect
within each given fuel type. No statistically significant temperature effects were found
within each fuel for Phase 1, Phase 2, and Indolene, except for CO in the MPFI
(Indolene), where the temperature effects are significant (p-value = 0.0161). Similarly,
Table 3.1.1.2 summarizes the p-values based on the comparison of fuel effects within
| each temperature. Except for CO from MPFI (100 F) with a p-value of 0.01, and NOx |
from MPFI (50 F) with a p-value of 0.0028, no fuel effects were fouﬁd within each
temperature Ifor all three technology groups and all vehicles as an aggregate.

Since all th.e test data used in this presentation were based on hot-stabilized test

cycles, 1t is conceivable that ambient temperature could have a minimal effect on
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Table 3.1.1.1 Comparison of temperature effects within each fuel type. The following table summarizes

the level of significance (p-value) based on one-way analysis of varjance.*

HC
Ind (50 F, 75 F, 100 F) P1(50F, 75 F, 100 F) P2 (5CF, 75 F, 100 F)
MPFI 0.1438 0.3461 0.9969
T8I 0.9892 0.7551 0.9979
CARBU 0.6357 0.9561 0.9028
All Vehicles 0.8804 0.9784 0.9735
co
Ind (50 F, 75 F, 100 F) P1(50F, 75 F, 100 F) P2 (50 F, 75 F, 100 F)
MPFI 0.0161 0.5083 0.9716
T8I 0.9728 0.5379 0.9637
CARBU 0.6881 0.6547 05124
All Vehicles 0.2452 0.8057 0.8707
NOx
Ind (50 F, 75 F, 100 F) P1(50F, 75 F, 100 F) P2 (50 F, 75 F, 100 F)
MPFI 0.1071 0.2762 0.7143
T8B!l 0.8057 0.8036 0.0645
CARBU 0.5263 0.8487 0.8964
All Vehicles 0.672 0.8678 0.4639

Table 3.1.1.2 Comparison of fuel effects within each temperature. The following table summarizes the level of

significance (p-value) based on one-way analysis of variance.*

* Ho: All sample means are same.

Ha: At least one of the means differs from the others.
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HC
. 50 F (P1, P2, Ind) 75 F (P1, P2, Ind) 100 F (P1, P2, Ind)
MPFI 0.6028 0.5406 0.1991
TBI 0.9832 0.6014 0.6792
CARBU 0.9082 0.7701 0.7822
All Vehicles 0.7637 0.6997 0.7981
CO
50 F (P1, P2, Ind) 75 F {P1, P2, Ind) 10Q F (P1, P2, Ind)
MPF! 0.894 0.35 0.01
TB1 0.92 0.47 0.71
CARBU 0.728 0.159 0.484
All Vehicles 0.883 0.69 0.22
NOx
50 F (P1, P2, Ind) 75 F {P1, P2, Ind) 100 F (P1, P2, Ind)
MPFI 0.0028 0.3122 C.3956
T8l Q5263 0.839 0.2881
CARSBU 0.5984 0.7158 0.8688
All Vehicles 0.2059 0.4102 0.9608



exhaust emissions. In fact, the effects of fuel and temperature could not be observed,
possibly due to the high variation of cycle and vehicle suppressing the true effects of
temperature and fuel. The following two sections provide a clear ‘indication of the

manner in which cycle type is related to temperature and fuel, respectively.

3.1.2. Comparison of Speed and Temperature Effects

This section examines flle relationship between speed and temperature while
holding fuel and vehicle factors constant. Note that "speed" is defined as the average
speed of the cycle. Exhaust émissions were plotted with respect to the cycle type in
an ascending speed from LOW1 (2.5 mph) to XHV»;Y (64.4 mph). Within each cycle,
the exhaust emissions at 50 F, 75 F, and 100 F were compared.

The relationship of temperature and speed and HC, CO, and NOx exhaust
emissions (in the MPFI group) is illustrated in Figures 3.1.2.1 to 3.1.2.3. There were
15 data (5 vehicles x 3 fuels) per each box plot. Figure 3.1.2.1 indicates that as 'the
average speed of the cycle increased, the HC emissions decreased and remained
unchanged from HHEWY to XHWY. Figures 3.1.2.2 and 3.1.2.3 show that as speed
incréased, the CO and NOx emissions appeared to decrease slightly. Moreover, the
high variability in the box'plot indicated that the vehicle model c‘ould have a greater
effect on emissions than temperafure factors.

For the TBI group, HC and CO e.missions decreased as average speed of the
cycle increased (see Figures 3.1.2.4 and 3.1.2.5), where each box plot.con_tains 9 data

(3 vehicles x 3 fuels). When NOx exhaust emissions were examined, except for the
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Figure 3.1.2.1 Box plots showing the effects of speed and temperature on HC exhaust emissions (MPFI).
Each box plot includes the minimum, maximurm, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.2.2 Box plots showing the effects of speed and temperature on CO exhaust emissions (MPFI).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 95th percentiles.
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Figure 3.1.2.3 Box plots showing the effects of speed and temperature on NOx exhaust emissions (MPFI).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.2.4 Box plots showing the cffects of speed and temperature on HC exhaust ernissions (TBI).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.2.5 Box plots showing the effects of speed and temperature on CO exhaust emissions (TBI).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.2.6 Box plots showiné the effects of speed and temperature on NOx exhaust emissions (TBI).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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UC, higher emissions were observed at both low and high average speeds (Figure
3.1.2.6).

For the CARBU group, as the average speed of the cycle increased, the HC
emissions decréased (see Figﬁre 3.2.1.7). Again, there were 9 data (3 vehicles x 3
fuels) per box plot. Figure 3.2.1.8 indicates that there was a wide variation in CO
emissions across all speeds. Additionally, CO emissions were found to be higher at
low and high average speeds. Similarly, higher NOx emissions were observed at both
low and high average speeds (Figure 3.2.1.9).

There were obvious differences among the technology groups in terms of the
data distribution pattern because of the vehicle-to-vehicle variation in each technology
group. Figures 3.2.1.10 to 3.2.1.12 present the results based on all vehicles. Each box
plot includes 33 data (11 vehicles x 3 fuels). In general, all HC, CO, and NOx
emissions were strong functions of speed (as the average speed increased, HC exhaust
emissions Aecreaséd while CO and NOx exhaust emissions increased at both low and
high average speeds). In addition, temperature effects for each cycle were trivial when
compared to speed effects. The speed factor is clearly more important than the
temperature factor with respect to exhaust emissions. |

Figure 3.1.2.13 offers an alternative way to present the data in Figures 3_2.1:10
to 3.2.1.12 apd only the mean I-ICS, CO, and NOx emissions with respect to 50 F, 75 F,
anci 100 F are presented. As anticipated, the temperature effects were minimal as
compared to cycle effects for all HC, CO, and NOx emissions.

To substantiate the findings from the above-mentioned 13 figures, one-way -
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Figure 3.1.2.7 Box plots showing the effects of speed and temperature on HC exhaust emissions (CARBU).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.2.8 Box plots showing the effects of speéd and temperature on CO exhaust emissions (CARBU).
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Figure 3.1.2.9 Box plots showing the effects of speed and temperature on NOx exhaust emissions (CARBU).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75Lh, and 90th percentiles. ‘

HYDROCARBON (ALL)

o LOW1 LOW3 NYCC SCCa2 FTP.B2 uc UHWY HHWY WHWY XHWY
100
s o
10 - .
. o
L e & o
rd P DR A ki
1 _.ﬁ ]— ] ? ¥ T. l ] T

e

0.1 2 . 4.

g/mile
.
t 3
L s
LI e S o g
Ol (T e
LB e L)

8 Jmmr
L}
®1
[ 4]

@ A
L o L ° o & .
™ ¥
0.01
°
0.001
82 883R 8828283128812 88R_REEEIREBRERIRESE RS

Temp (F)

| Figure 3.1.2.10 Box plots showing the eflects of speed and temperature on HC exhaust emissions for all vehicles
Fach box plot includes the minimum, maximum, 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles.

76



CAREON MONOXIDE (ALL}

Lowt Low3 NYCC Scc-12 FTP-B2 uc UHWY HHWY WHWY XHWY

8
K-

a o ]
100%j-ij'!éanI:ﬂoTT_ .‘— :TT»T!T
ol inialiin T*Jh 1# D Tiinial ﬁ fL }j |
2 ol-o_ U, _L
ST T _
. @ - O - 4 hi | w
01 o e s ;ﬂ. ":‘I‘. .Iu
0.01 __. ° ° o
° L]
¥l 2R 8RR 881288238288 83¥RE8RER RS RS
Temp {F)

Figure 3.1.2.11 Box plots showing the effects of speed and temperature on CO exhaust emissions for all
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ANOVA was used to examine the temperature factor within each cycle. The test

hypotheses were as follows:

Ho: All sample means are the same.

Ha: At least one of the means differs from the others.

Table 3.1.2.1 summarizes the p-values when the temperature factor was
compared within each cycle. Except for the NOx from the MPFI (at LOW1 cycle)
with a p-value of 0.0223 and CO from TBI (at SCC-12) with a p-value of 0.036, the
statistical analysis suggests there were no temperature effgcts within each cycle for all
three technology groups and all vehicles as an aggregate. In short, these statistical

 tests confirm that temperature effects within each cycle were statistically insignificant.

3.1.3 Comparison of Speed and Fuel Effects

This section reviews the relationship of speed and fuel in an approach similar
to that of Section 3.1.2. Within each cycle, the fuel effects due to Phase 1, Phase 2,
and Indolene were examined. The variation in each box plot was due to the variation
of vehiclés and temperatures.

Figures 3.1.3.1 to 3.1.3.3 present the relationship of speed and fuel effects on
tl;le MPFI group. There were 15 data (5 vehicles x 3 températures) per box plot. It
was found that HC and CO emissions decreased as average speed of the cycle

increased. For NOx, the relationship between emissions and average speed of the
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Figure 3.1.3.1 Box plots showing the effects of speed and fuel on HC exhaust emissions (MPFED.
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.3.2 Box plots showing the effects of speed and fuel on CO exhaust emissions (MPFI).
Each bex plet includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.3.3 Box plots showing the effects of speed and fuel on NOx exhaust emissions MPFD).
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Figure 3.1.3.4 Box plots showing the effects of speed and fuel on HC exhaust emissions (TBI).
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cycle was ambiguous because NOx exﬁissions fluctuated widely across all cycles.

From Figures 3.1.3.4 and 3.1.4.5, it can be seen that HC and CO exhaust
emissions decreased when a\}erage speed of the cycle increased in the TBI group.
Note that each box plot contains 9 data (3 vehicles x 3 temperatures). As illustrated in
Figure 3.1.3.6, except for the UC, NOx emissions increased slightly at both low and
high average speed.

For the CARBU group, it was found that HC exhaust emissions increased as
average speed increased (Figure 3.1.3.7). Again, there.were 9 data (3 vehicles x 3
temperatures) per box plot. In addition, CO emissions were found to increase slightly
at both low and high average speed. In addition, there was a clear trend that medians
of CO emissions for Phase 2 fuel were lower among all three fuels (Figure 3.1.3.8).
Similarly, higher NOx emissions were founci at both low and high average speeds
(Figure 3.1.3.9).

The dissitmilar data distribution among the three technology groups was
probably due to vehicle-to-vehicle variation in each technologyb group. When all
vehicles were combined, it was found that HC emissions decreased as average speed
increased (Figure 3.1.3.10), while CO and NOx emissions increased slightly at both
iow and high average speeds (Figpres 3.1.3.11.and 3.1.3.12). Despite the high vehicle
varlations, speed was the dominant factor when compared with the influence of the
fuel.

Figure 3.1.3.13 offers an alternative way to examine the data; the overall

emissions average of HC, CO, and NOx due to Phase 1, Phase 2, and Indolene are
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Figure 3.1.3.5 Box plots showing the effects of speed and fuel on CO exhaust emissions (TB).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and $0th percentiles.
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Figure 3.1.3.6 Box plots showing the effects of speed and fuel on NOx exhaust emissions (TBI).
Each box plot includes the minimum, maximum, 10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 3.1.3.9 Box plots showing the effects of speed and fuel on NOx exhaust emissions (CARBU).
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Figure 3.1.3.11 Box plots showing the effects of speed and fuel on CO exhaust emissions for all vehicles.
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presented within each cycle. For cycles with low average speeds (e.g. LOW1, LOWé,
and NYCC), it was clear that average emissions of HC, CO, and NOx due to Phase 2
and Indolene appear to be lower than Phase 1.

To substantiate the ﬁﬁdings from the above-mentioned thirteen ﬁgurés, one-way
ANOVA was used to examineg the fuel factor within each cycle. The test hypotheses

were as follows:

Ho: All sample means are same.

Ha: At least one of the means differs from the others.

Table 3.1.3.1 summarizes the p-values when the fuel factor was compared for
-each cycle. Except for NOx from the TBI at both FTP-Bag 2 (p-value = 0.0249) and
LA92 (p—valu.e = 0.029), the statistical analysis suggests there were no significant fuel
effects within each cycle for all three technology groups and all vehicles as an
aggregate.
3.14 Conlpatison of the Technology Groups

This section examines the effects of technology and fuel on HC, CO, and NOx
exhaust emiésions while keeping other factors (vehicles, temperature, and cyéles)
constant. Note ‘that_ from Sections 3.1.1 to 3.1.3, it wads concluded that in g_,eneral the
wide distribution range in the box pldts was probably due to vehicle-to-vehicle

variations rather than the influence of the variables under investigation.
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For the MPFI group, each box plot contains 150 data (5 vehicles x 3
temperatures x 10 cycles) whereas in the TBI and CARBU groups, each box plot
contains 90 data (3 vehicles % 3 temperatures x 1'0 cycles).

As shown in Figures 3.1.4.1 and 3.1.4.2, the pattern of HC and CO emissions
was different émong fuel delivery technology groups. Not only did the HC and CO
exhaust emissions descend in the order of MPFI, TBI, and CARBU but the medians of
HC and CO emissions in the MPFI group were about one order of magnitude lower
than the medians of the CARBU.

When NOx was examined (see Figure 3.1.4.3), it was found that emissions for
MPFI were lower than both TBI and the CARBU group. Furthermore, there was no
signiﬁc;mt difference between the TBI and CARBU groups. This could imply that
MPFI reduced NOx emissions more than either TBI or CARBU.

When compared with all technology groups for HC, CO, and ﬁOx exhaust
emissions, 1t was observed that fuel effects within each technology group were
minimal. In contrast, despite the large vehicle-to-vehicle variation in each technology

group, the fuel delivery system definitely has a major impact on the exhaust emissions.

3.1.5 Comparison of Each Vehic_le;

While the previous Section 3.1.4 examines the effect of technélogy group on
exhaust emissions, this section examines the vehicle-to-vehicle variation. Except for
the OIds-mobil'e- which includes-80 data (10 tests- were 'excludea), all box plots for other

vehicles contain 90 data (10 cycles x 3 temp x 3 fuels). Figures 3.1.5.1 and 3.1.5.2
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present the HC and CO exhaust emissions. It was clear fhat the Oldsmobile was the
"high emitter" in the MPFI group. In fact, the HC and CQ emissions from the
Oldsmobile were approximattjely two orders of magnitude higher than other vehicles
‘within MPFI. In general, the overall HC and CO exhaust emissions in MPFI were
lower than TBI, and the emissions from the TBI group were generally lower %han the
CARBU group.

Figure 3.1.5.3 presents the NOx exhaust emissions of each vehicle. For NOx,
the Oldsmobile did not behave as the high emitter in the MPFI group but instead it
was sifnilar to the other four vehicles in fchis group. _In addition, it was found the
emissions pattern for both TBI and CARBU were similar. Nevertheless, the overall
NOx emissions from MPFI were lower than those for TBI and CARBU, and this was
consistent with the data discussed in Section 3.1.4.

Similar to the conclusion from Section 3.1.4, vehicles of the MPFI group had
the lowest emissions. In general, exhaust emissions were a strong function of the
technology group, average mileage and model year of the vehicles. Vehicles of recent
model years had lower mileage and more advanced fuel delivery systems when
compared with vehicles of older model years and higher mileage. In addition, the
emission components (e.g., cataly;t) for older vehicles have a higher risk of
deterioration when compared to a recent model year vehicle. Thus, 1t was conceivable
the more recent model year vehicles were "cleaner" than older model };ear vehicles.

Neverfheless, high emitters can also be found among new vehicles.
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3.1.6 Comparison of Fuel Economy

This section reviews %he fuel economies based on-Phase 1, Phase 2, and
Indolene for all three technology groups and all 11 vehicles combined. Note that fuel
economy was based on’ each specific cycle. The fuel economy was plotted with
respect to the average speed of the cycle.

Figure 3.1.6.1 shows the average fuel economy with respect to the cycle for
MPFI. Fuel e'conomy increased with speed, to a peak of approximately 45 mph where
the optimum fuel economy was about 33 miles per gallon, and then dvecreased be_yond
45 mph. In addition, fuel economy for Phase 2 fuel was generally higher than Phase 1
and Indolene across all speeds.

As seen in Figure 3.1.6.2, the relationship of fuel economy with respect to
speed for TBI was similar to MPFI. That is, fuel economy increased up to about 45
mph where the optimum fuel economy for TBI was about 30 miles per gallén, then
decreased beyond 45 mph. It was also observed thaf Phase 2 fuel appeared to have
higher average fuel economy across all.speeds except betwegn 45 to 50 mph, where
both Indolene and Phase 1 appeared to provide a higher fuel economy than Phase 2
fuel.

For CARBU (see Figure 3.1.6.3), similar to both the MPFI and TBI groups,
fuel economy exhibited a similar trend with respect to speed, and the optimum fuel
economy was approximately 28 miles per gallon at about 45 mph. In addition, there

was no clear pattern that Phase 1 or Phase 2 fuel pe.rformed better across all speeds.
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Based on Figures 3.1.6.1 to 3.1.6.3, it was clear that technology group :could have a
major 1mpact on optimum fuel economy as compared to fuel type. In general, recent
model year vehicles were more fuel efficient than older model year vehicleé.

As indicated in Figure 3.1.6.4, when comparing fuel economy for all vehicles
as an aggregate, it was found that based on all 11 vehicles studied in this project, fuel
economy due to Phase 2 fuel was higher than for both Phase 1 and Indolene fuels.

Figure 3.1.6.5 compares the average fuel economy based on technology groups
and shows that'the average fuel economy for MPFI was higher than for TBI and
CARBU across all speeds. Nevertheless, it was observed that for speeds below 30
mph, the average fuel economy for CARBU was Higher than TBI, while for speeds
above 40 mph, the fuel economy for TBI was higher than CARBU.

In short, the best fuel economy for all technology groups was observed at
approximately 45 mph, and vehicles from MPFI have better fuel economy than both
CARBU and TBI. This was probably due to an improved fuel delivery system, more

efficient engine combustion, and improved aerodynamics.

3.1.7 Catalyst Efficiency

This section reports the catalyst efficiency of each vehicle, which was
determined when each vehicle was tested for the sequence of 75 F with Indolene. The
primary function of a three-way catalyst (TWC) is to facilitate the conversion of HC |
into water vapor and carbon dioxide, CO into carbon dioxide, and NOx into nitrogen

and oxygen, while the oxidation catalyst converts HC and CO into water and carbon

105



dioxide. In general, _;che oxidation catalyst 1s common in older vehicles, while the
TWC 1s common in vehicles of 1981 model year and later.

The catalyst efﬁciencj test was performed under FTP conditions with Indolene
at 75 F. Two separate analyzers were used separately to analyze the exhaust streams
before entering the catalyst and after the catalyst. By summing the data from these

two streams, catalyst efficiency was calculated as follows:

Catalyst Efficiency = ( _Emissions before Catalyst - Emissions after Catalyst )*100
Emissions before Catalyst

As exhaust emissions for the FTP were reported for Bag 1, Bag 2, Bag 3, and
‘Fhe Composite, the catalyst efficiency was reported in é similar way. That is, catalyst
efficiency was measured for each bag as well as the composite of all three bags.

Figure 3.1.7.1 presents the catalyst efficiency of all vehicles based on the FTP
Composite. Note that both the 1983 Honda Accord and 1979 Chevrolet Impala were
equipped with an oxidation catalyst (OC) while the remaining vehicles were equipped
with a three-way catalyst (TWC). The catalyst of vehicles from the MPFI and TEI
groups all appeared functional for HC, CO, and NOx‘A Moreover, 1t was observed that
while the HC and CO cenversion efficiency reméined almost uncha.ngéd, the
conversion efficiency for NOx declined ‘asu the vehicle model year became older for
these vehicles.

It seems that none of the catalysts in the CARBU group were functional. In
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Catalyst Efficien'cy of HC, CO, and NOx
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fact, the negative readings suggest that the emissi_bns “Increased" after the catalyst.

For the Buick Regal, the negative conversion efficiency readings for both CO and
NOx fell approximately withi:n the = 4% combined instrumental error from the two
analyzers and this could explain the negatix‘fe readings. On the other hand, for the
Chevrolet Impala, the negative conversion efficiency readings for both CO and NOx
fall beyond the possible instrumental error of = 4%. One possible explanation was the
formation of NOx inside the OC in Chevrolet Iimpala. More research is needed to
investigate such problem, however, the limited bu‘dget of the present study pr'eclude us
from further investigating such issue. Note that the catalyst efficiency test for the
Honda Accord was invalid. 'However, it was very likely that it'wa;s "dead," similar to
other vehicles in the CARBU group.

Figures 3.1.7.2 to 3.1.7.4 present the catalyst efficiency of HC, CO, and NOx
for all vehicles based on FTP Bag 1, Bag 2, Bag 3, and the Composite. In general,
the Bag 1 catalyst efficiency was always lower than Bag 2 and Bag 3 because the Bag
1 is a cold start mode and the catalyst was unable to reach the optimum operational
temperature when the véhicle was started. Therefore, the catalyst efficiency for Bag 1
was lower than the catalyst efficiency of Bag 2, Bag 3, and the Composite. When
examining the catalyst efﬁéiency from technology groups with functional catalysts
- (MPFI and TBI), it was found that the average Bag 1 catalyst efficiencies for HC, CO,
and NOx were approximately 88%, 77%, 90%, reépectively, compared to the éverage
Composite catalyst efficiency.

In short, vehicles ten years or older were likely to have malfunctioning or
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-20

Catalyst Efficiency of NOx

92 GM OMsmobit
92 Ford Taurus
92 Toyote Paseo
80 Linooln Town
Car
B Meroury Topaz
98 Dodge
Daytona
a8 Cadillao
Sedan De Ville
85 Continental
MRK VIt
83 Honda
Acoord®
82 Buick Regal

H nox-81 OOnox-B2 B wnox-s3 El Nox ]
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"dead" catalysts and this could explain why older vehicles have a higher tendéncy to
be "high emitters." More importantly, it suggests that soaking temperature has a
strong influence on catalyst conversion efficiency, especially during the cold start

mode. -

3.1.8 Comparison of Phase 1 and Phase 2 Fuel

The previous Section 3.1.8.1 presented the effects of fuel and temperature on
exhaust emissions. The high vehicle-to-vehicle and cycle-to-cycle yariability masked
the potential effect of fuel type on exhaust emissions. Studies from CARB (1994)
have reported that when Phase 2 fuel is introduced startiﬁg in June, 1996, it will
produce an immediate reduction in air pollution. In fact, it was projected that in the
1996 calendar year, the introductivon of Phase 2 fuel will cause ROG (including
evaporative hydrocarbons), NOx, and CO to decrease by 17%, 11%, and 11%,
respectively (CARB, 1994) when compared to Phase 1 fuel.

The present study examined the experimentally difference between Phase 1
(without oxygenates) and Phase 2 (with oxygena{es) ‘fuels based on all eleven vehicles
operating under the same speed cycle and temperature conditions. In other words, the
exhaust emissions due to Phase l_a_nd Phase 2 fuel were compared for each vehicle
under identical test conditions (test cycle and temperature), and 30 comparisons were
made per vehicle (10 cycles x 3 temperatures). Student t-test (paired samples for
mean) was used to determine the significance of differences observed between Phase 1

and Phase 2 fuels for the identical cycle and temperature. The test-hypotheses were as
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follows:

Ho: The mean difference in exhaust emissions between Phase 1

and Phase 2 fuel =0

Ha: The mean difference in exhaust emissions between Phase 1 and

Phase 2 fuel # 0

where 0=0.05

Table 3.1.8.1 summarizes p-values based on the paired t-test. It was found that
Phase | and Phase 2 fuels definitely affect the exhaust emissions differently depending
on the technology group. For instance, in the MPFI group, there was a significant
difference in NOx emissions whereas in both TBI and CARBU, there was a significant
difference in HC and CO emissions. However, when all vehicles were considered, only
HC and NOx exhibited significant differences. Figure 3.1.8.1 presents the distribution of
population means with 95% confidence intervals based on Table 3.1.8.1. In general, the
averages for Phase 2 fuel is lower than Phase 1 except for HC in the MPFI group.

In summary, based on the 11 vehicles investigated in the present study, the
emissions reduction between Phase 2 and Phase 1 fuel for HC, CO, and NOx observed
here were 17%, 13%, and 11%, respectively. However, CO reduction was not

statistically significant based on the paired t-test (0=0.05). Note, the present study did
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Table 3.1.8.1 Comparison of Phase 1 and Phase 2 exhaust emissions. The following table
sumimarizes the level of significance (p-value) based on t-Test: Paired two-sample
for means.*

HC CcO NOx
MPFI Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
Mean 0.968 0.918 24.090 25,837 0.557 0413
Std Deviation 1.743 2.035 48,923 52.882 0.439 0.334
Std Error 0.142 0.166 3.995 4318 0.036 0.027
n : 150 180 150 150 150 150
p-value 0.647 0.465 <0.001
% Reduction from
Phase 2 to Phase 1** 511 7.25 -25.85
TBI Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
Mean 2.557 1.786 31.876 20.020 0.886 0.852
Std Dev 5,660 3.541 88.079 47.045 0.363 0.399
Std Error 0.597 0.373 9.284 4,959 0.038 0.042
n Q0 Q0 Q0 Q0 Q0 90
p-value 0.027 0.048 0.201
% Reduction from
Phase 2 to Phase 1 -30.14 -37.19 -3.76
CARB Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
Mean 2.288 2.043 17.224 14.532 1.228 1.170
Std Dev 2,895 2,929 16.166 14.197 0.645 0.643
Std Error 0.305 0.309 1.704 1.496 0.068 0.068
n G0 %0 Q0 Q0 20 90
p-value 0.012 0.004 0.260
% Reduction from -10.70 -15.63 -4.71
Phase 2 to Phase 1
All Vehicles ‘ Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
Mean 1.761 1.462 24.341 21,168 0.830 0.739
Std Dev 3.584 2.801 57.295 44,069 0.560 0.555
Std Error 0.197 0.154 3.154 2426 0.031 0.031
n 330 330 330 330 330 330
p-value 0.008 0.110 <0.001
% Reduction from -17.00 -13.04 -10.89

Phase 2 o Phase 1

¥ Ho: The mean difference in exhaust emissions between Phase 1 and Phase 2 fuelis equal to 0
Ha: The mean difference in exhaust emissions between Phase 1 and Phase 2 fuel is unequal to 0

** % Change = (Phase2- Phase1)*100/ Phasel
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not include measurement of evaporative HC emissions. Therefore, the present values
for difference between Phase 1 and Phase 2 fuels for HC is expected to be a lower
Iimit. In conclusion, HC and NOx emissions reductions due to Phase 2 fuel observed

in the present study were in good agreement with reductions predicted earlier by ~—

CARB.

3.1.9 Comparison of Unified Cycle (hot start) and Federal Test Procedure (cold start)
While the data analyses in Sections 3.1.1 and 3.1.2 concluded that ambient
temperature has no éigniﬁcant effect on HC, CO and NOx exhaust emissions for all
the hot stabilized tests, the effect of temperature on exhaust emissions could be
important when cold start of the vehicle was considered. Note that éold start refers to
starting the vehicle at the temperature at which the vehicle was soaked for between 12
to 36 hours prior to testing. The soaking temperature affects the conversion efficiency
of the catalyst which iﬁ turn affects the exhaust emissions because the catalyst has not
reached opti.m'um conversion efficiency during a cold start.
Notg‘that both the' UC and FTP consist of 3 b‘ags, where Bag 3 is an 1dentical
repeat of Bég 1_- In the present study, the FTP possesses a cold start for Bag 1
whereas the UC has a hot start in_ Bag 1. Hence, By examining Bag 1 and Bag 3 of
“the FTP as well as Bag 1 and Bag 3 of the UC, the effects of cb'ld start and hot start
could be compéred. Eac}; of the following figures includes 9 blocks, and each block
contains exhaust emissions based omx Bag 1, Bag 2, Bag 3, and the Composite.

As shown in Figure 3.1.9a, the medians of Bag 1 of the FTP were about half
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Figure 3.1.9.1a Box plots showing the effects of fuel and temperature on HC exhaust emissions (FTP). There
are 4 box plots representing Bag 1, Bag 2, Bag 3 and Composite in each fuel block. Each box plot includes
the minimum, maximum, 25th, 50th and 75th percentiles. ‘
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order of magnitude higher than the medians of Bag 3 for HC emissions. When
examining the effect of temperature on all FTP Bag 1 emissions, it appears that the
lower the soaking temperatur:e, the higher the Bag 1 emissions for all combinations of
fuel and temperature. Since vehicles undergoing the FTP were soaked at the test
temperature for at least 12 hours prior to testing, it was obvious that the soaking
temperature of 50 F had greater impact than 100 F for the Bag 1 FTP. Therefore,
soaking temperature was an important factor in characterizing vehicle start emissions.
On the other hand, an examination of UC Bag 1 and Bag 3 suggests there is no
difference between Bag 1 and Bag 3 HC exhaust emissions (Figure 3.1.91b).

When CO was examined for Bag 1 and ng 3 of the FTP (Figure 3.1.9.2a),
the medians of Bag 1 appeared to be about one order of magnitude higher than Bag 3
for all corﬁbinations of fuel and temperature. However, when the UC was examined,
Bag 1 and Bag 3 appeared to have similar distributions for all temperature and fuel
combinations (Figure 3.1.9.2b).

According to the NOx emissions frém Figure 3.1.9.3a, the FTP Bag | appeared
to have a higher overall distribution whgn compared tc; Bag 3 for all combinations of
fuel and temperature. When the UC was:inspectcd, Bag 1 and Bag 3 appeared to have
a similar distribution for all temperature ?.md‘f_uel combinations (Figure 3.1.9.3b).‘

The paired t-test for means was used to co.mpare the differences b:etween Bag 1
and Bag 3 of the FTP and UC, respectively, under different fuel and temperature

conditions. They test hypotheses were as follows:
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Figure 3.1.9.2a Box plots showing the effects of fuel and temperature on CO exhaust emissions (FTP). There
are 4 box plots representing Bag 1, Bag 2, Bag 3, and Composite in each fuel block. Each box plot includes
the minimum, maximum, 25th, 50th and 75th percentiles.
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Figure 3.1.9.2b Box plots showing the effects of fuel and temperature on CO exhaust emissions (UC). There
are 4 box plots representing Bag 1, Bag 2, Bag 3, and Composite in each fuel block. Each box plot includes
the minimum, maximum, 25th, 50th and 75th percentiles.
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Figure 3.1.9.32 Box plots showing the effects of fuel and temperature on NOx exhaust emuissions (FIP). There
are 4 box plots representing Bag 1, Bag 2, Bag 3 and Composite in each fuel block. Each box plot includes
the minimum, maximum, 25th, 50th and 75th percentiles.
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Ho : The mean difference in exhaust emissions between Bag 1 and Bag 3 = 0
Ha : The mean difference in exhaust emissions between Bag 1 and Bag 3 # 0 ‘

‘where a=0.05

Table 3.1.9.1 summarizes the p-values for the comparison between Bag 1 and Bag 3 of
the FTP and UC, respectively. In general, except for a few cases, it is evident there
was a significant difference between Bag 1 and Bag 3 of the FTP, in particular that
the cold start Bag 1 exhibited highef HC, CO, and NOx emissions than thevhot start
Bag 3. Conversely, there was no difference between Bag 1 and Bag 3 of the UC,
since both Bag 1 and Bag 3 were in the hot start mode.

In summary, as expected, ambient temperature had a greater emissions
implication for the cold start than the hot-stabilized operating mode of the vehicles.
Unlil\;e the hot stabilized operat.ing mode of the vehicle, where exhaust is mainly speed
dependent, cold start mode depends.on the soaking temperature and frequency of cold
starts. Therefore, in order to estimate the overall mobile emissions inventory, it is
imperative to have a reasénable frequency estimgte of cold starts for the e;ltire vehicle

fleet.

3.2 Test Repeatability and Vehicle Baseline Drift
The testing for the present study lasted approximately 15 months. All vehicles
were tested on the same dynamometer to eliminate any dynamometer-to-dynamometer

variation. Six drivers participated in the testing program and were randomly assigned.
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In fact, drivers were assigned to the testing based on the daily work load of the
contractor (ATDS).

The purpose of repeating tests for each vehicle was to evaluate test
repeatability. Ideally, all tests should be repeated at least once in order to estimate the
error term. Nevertheless, funding was available to repeat only one sequence (or 10
cycles) at 75 F with Indolene for each vehicle. One particular concem about vehicle
testing was the drift of baseline FTP emissions due to emission control component
deterioration during the course of testing. This additional repeated sequence allowed
us to examine the baseline drift of the vehicles, if any, during the course of the study.
There was an idling period for each vehicle between the first 9 sequences and the last
repeated sequence and it varied from one to seven months depending on the vehicle
testing schedul.e.

In order to estimate baseline drift of each vehicle, the FTP data were plotted
with.respect to time, though the FTP was conducted at various fuel and temperatufe
combinations. The FTP was chosen to assess the vehicle's baseline drift because 1t 1s
a relatively stable test with less test-to-test variability than other test cycles of low and
high average speed. Though the FTP was conducted at different temperature and fuel
combinations, their effects should be relatively small. Figures 3.2.1 to 3.2.11 present
test repeatability and baseline drift for all eleven vehicles. Each figure includes the
comparison of exhaust emissions from the first and repeated sequence as well as the
baseline drift during the course of testing,

The 1990 Lincoln Town Car was found to be repeatable for HC, CO and NOx

—
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emissions, except for the CO reading in SCC-12 cycle (Figure 3.2.1a). Also, it was
observed that CO exhibited greater ﬂuc‘tuation with respect to date, temperature, and
fuel when compared to HC e%nd NOx (Figufe 3.2.1b).

For the 1992 Oldsmobile, there was a drastic difference between the first and
repeated sequence as shown in Figures 3.2.2a and 3.2.2b. It was observed later that
to.ward the end of the 8th test sequence, the on-board diagnostic signal indicated that
the oxygen sensor was malfunctioning. The emissions of HC, CO, and NOx decreased
dramatically after the oxygen sensor was replaced. There was an approximate two
orders of magnitude difference for HC and CO emissions before and after the oxygen
sensor was replaced. Nevertheless, baseline NOx was unaffected by replacement of
the oxygen sensor.

As shown in Figure 3.2.3a, the 1992 Toyota Paseo experienced episodes of
high CO reading in the LOWS3 and SCC-12 cycles of the repeated sequence. In
addition, it was observed that CO and NQX fluctuated more than HC (Figure 3.2.3D).

The 1989 Mercury Topaz (Figure 3.2.4a) also showed a greater difference in
CO between the initial and repeated sequences, especially n cycles of low avérage
speed (1.e.,, LOW], LOW3, NYCC, and SCC-12). Again, while HC and NOx
remained almost unchanged throughout the course of testing, it was observed that there
was high CO variation in the baseline emissions and two major peaks of CO were
Qbserved (Figure 3.2.4b). There was no explanation for the cause of these CO
"episodes.” |

For the 1992 Ford Taurus, it was found that except for CO at LOW3 cycle, all
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Figure 3.2.1a Repeatability of two test sequences at 75 ¥ and Indolene (1990 Lincoln Town Car)
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1992 Oldsmobile

B ne

O Her
E nox

B nox-R

14

s|lw/welb

AMHX

AMHM

AMHH

AMHN

¢6v1

did

71008

DOAN

EMOT

LAOT

B co
Ocor

did

LAMOT

1000

100

ojiwy/welB

0.1

Figure 3.2.22 Repeatability of two test sequences at 75 F and Indolene (1952 Oldsmobile)
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1992 Toyota Paseo
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Figure 3.2.3a Repeatability of two test sequences at 75 F and Indolene (1992 Toyota Paseo)
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other cycles in both sequences appeared to be repeatable (Figure 3.2.5a). Furthermore,
both HC and NOx remained almost constant while CO experienced a slight fluctuation
when the baseline was exami:ned (Figure 3.2.5b).

When examining results from the 1985 Continental MRKVII, 1986 Cadillac De
Ville, 1988 Dodge Daytona, and 1979 Chevrolet Impala, (see Figures 3.2.6 to 3.2.9) it
appeared that HC, CO, and NOx were generally repeatable. In addition, the baseline
of HC and NOx exhibited less variability when compared to CO during the course of
testing. In general, CO was observed to fluctuate unpredictably and have higher
val:iation than both HC and NOx.

There was a relatively large difference between the first and repeated sequences
'vfor HC, CO, and NOx when the 1982 Buick Regai was examined (Figure 3.2.10a).
This phenomenon was also observed when examining the baseliﬁe (Figure 3.2.10b).
Specifically, it was found that readings of HC, CO, and NOx from the last FTP were
almost twofold higher than the previoug nine FTP readings. This sudden increase in
exhaust emissions may have been due to the fact that the vehicle stood idle for almost
7 months between the 9th and 10th sequences.

When the 1983 Honda was examined, 1t was observed that CO was not
repeatable (Figure 3.2.11a). Examination of the baseline data suggested that HC and
NOx remained almost constant while CO fluctuated durning the course of testing
(Figure 3.2.11b).

In short, except for a few vehicles, it was found that the baseline for HC and

NOx emissions were relatively stable when compared with CO throughout the course
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1985 Continental MRKVII
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1988 Cadillac De Ville
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1979 Chevrolet Impala
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1982 Honda Accord
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of testing. In addition, CO tend to fluctuate unpredictably when compared to HC and
NOx.

Student paired t-tests were employed to investigate repeatability of the
sequences. The paired-t test was based upon the differences between each test in first
and repeated sequences, in particular, to check.whether these differences were equal to

zero. The null and alternative hypotheses tested were as follows:

Ho: The mean difference in exhaust emissions between two test sequences = 0
Ha: The mean difference in exhaust emissions between two test sequences % 0

where o=0.05

The results in terms of p-values weré presented in Table 3.2.1. It was found
that, as expected, CO and HC emission§ from the 1992 Oldsmobile were statistically
.different due to the oxygen sensor replacement. NOx emissions from the 1992 Toyota
Paseo and CO emuissions from the 1983 Honda Accord were also. found to‘ be
‘statistically different. As for the 1989 Mercury To'paz and the 1982 Buick Regal, it
was found that HC, CO, and NOx for both vehicles were not repeatable. This
suggests that HC, CO, and NOx may be independent of each other for certain vehicles.
Thus, if one of the exhaust pollutants did not meet the emission standards, it does not
imply that the other exhaust pollutants failed the emission standards.

In general, except for the 1992 Oldsmobile (p-value = 0.00259), 198§ Mercury

Topaz (p-value = 0.0480) and 1982 Buick Regal (p-value = 0.0135), HC and NOx
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Table 3.2.1 Comparison of two test sequences (75 F and Indolene). The following
table summarizes the level of significance (p-value) based on t-Test: Paired two-sample
for means.*

Vehicles HC CO NOx
1990 Lincoln Town Car | 0.22620 0.26844 0.2047%5
1992 GM Oldsmobile 0.00259 0 0.24265
1992 Toyota Paseo 0.39054 0.54438 0.01320
19839 Mercury Topaz 0.04880 0.03593 0.04190 .
1992 Ford Taurus 0.43301 0.36160 0.11200
1985 Continental MRK V! 0.10323 0.18106  0.23127
1986 Cadillac De Ville 0.30190 0.66366  0.38076
1988 Dodge Daytona 0.31140 0.71685  0.28441
1979 Chevrolet Impala 0.67448 0.41427 0.06320
1982 Buick Regal 0.01350 0.00001 0.00564
1983 Honda Accord* 0.85465 0.01969 0.16883

*Ho: The mean difference in exhaust emissions between two test
sequences is equal to O.

Ha:. The mean difference in exhaust emissions between two test
sequences is unequal to O.
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emissions for the remaining eight vehicles were repeatable. Similarly, except for the
1992 Oldsmobile (p-value = 0) and 1982 Buick Regal (p-value = 0), 1989 Mercury
Topaz (p-value = 0.0359), an:d 1983 Honda' Accord (p-value = 0.0197), CO emissions
for the remaining seven vehicles were repeatable.

Two possible reasons that the repeated sequences were not comparable to the
initial sequence are emission component deterioration and test-to-test varability.
Nevertheless, this is a practical problem in vehicle testing and suggests that in future

vehicle testing, it 1s imperative to minimize waiting periods between testing.

33 Principal Component Analysis:

Principal component analysis (PCA) is considered to be an exploratory
statist'ical technique that may be useful in gaining a better understanding of the
interrelationships among many variables and is generally performed to simplify the
description of a set of interrelated variables. In principal component analysis, the
original variables are treated equally, that is, they are not divided into dependent and
independent variables; instead, original variables are transformed into new uncorrelated
variables. Thgse new variables are called principal components. Each principal
component is a linear combination of the original variables. One way to measure the
information of each principal component is its variance. For this reason, the principal
components are arranged in order of decreasing vérianm. Therefore, the most
informative principal component is the first, and the least informative is the last.

In the present data analysis, we were interested in discovering the correlation
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among variables such as fuel, temperature, speed, mileage, model year, number of
cylinders, engine displacement, HC, CO, and NOx exhaust emissions. Since all
variables must be n-umerical,‘the Reid Vapor Pressure (RVP) of each fuel was used to
quantify the fuel variables. As mileage and model year, as well as number of
cylinders and engine displacement, were correlated to each other, the n.umber.of
cylinders and model year were excluded from the analysis to simplify the PCA.

The PCA was performed on all 11 vehicles as a group. The correlation matrix
in Table 3.3.1 shows the correlation among all the variables in the PCA. It was found
that HC correlated highly to CO (0.7461), correlated negatively to speed (-0.3840), and
correlated positively to the engine displacement (0.2594). In addition, CO was
positively correlated to HC (0.7461) ‘and engine displacement (0.1926), while
negatively correlated to speed (-0.1754). Further, NOx was found to be correlated to
the mileage of the vehicle (0.5026), negatively correlated to engine displacemeﬂt
(0.1732), and negatively correlated to speed (—.0.1273).

Table 3.3.2 reveals all eight principal components. Each principal component
was evaluated as to whether or not it made sense from the perspective of vehicle
engineering principlés. In general, PCA attempts to summarize the data with a linear
combination of all variables, and typically the first few principal components account
for the most of the variance and afford the most useful information. The eigenvectors,
‘or coefficients, in each principal component, also provide us with information on the
weight of e.ach variable in the linear model.

The first principal component suggested that the most useful information in
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depicting the dataset was: speed, HC, CO, NOx, mileage, and engine displacement.
When interpreting this physically, it is true that HC, CO, and NOx could be inversely_
* related to speed especially for cycles of low average speed. In addition, it is generally
true that the higher the vehicie's mileage, the greater the exhaust emissions.

The second principal component indicgted that HC and CO emissions were also
inversely related to the speed. However, no more useful information can be drawn
from the second principal component. When the third principal component was
considered, it suggested that fuel and temperature were inversely related to each other.
Since temperature and fuel are independent variables in this study, there was no
correlation between them and this suggests that the PCA may not be providing useful
information beyond the second principal component.

In short, only the first principal component and correlation matrix provides
some useful information in this data analysis for it supports the relative importance of

speed to fuel and temperature conceming HC, CO, and NOx exhaust emissions.

3.4 Analysis of Variance

The objective of this analysis was to detect any synergistic effects among
speed, temperature, and fuel factors as ‘wpll as to discover the relative significance of
these three factors for exhaust emissions. Analysis of variance (ANOVA) with o =
0.05 was used to examine the ﬁlain and interaction effects of speed, texﬁperature, and
fuel on exhaust emissions. Note that only 980 tests were used for data analysis as ten

tests from the Oldsmobile were eliminated due to oxygen sensor malfunctioning.
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Since the data matrix does not include all the data, an unbalanced ANOVA was
employed.

Table 3.4.1 outlines the three-way ANOVA table.. This analysis was performed
on each technology group and all eleven vehicles combined to explore the relative
contribution of speed, temperature, fL;el, and their interaction terms on the emission
rates.

This complete database was analyzed with Statistical Application System (SAS)

software and based on the PROC GLM from SAS:

HC CO NOx = Veh Speed Temp Fuel Speed*Fuel Speed*Temp Fuel*Temp

Speed*Temp*Fuel

where HC, CO and NOx were dependent variables while vehicle, speed, cycle,
temperature, fuel, speed*fuel, speed*temp, fuel*temp, and speed*temp™fuel were

independent variables or factors. The test hypotheses were as follows:

Ho: The effect due to each factor = 0

Ha: The effect due to each factor Z 0

where o=0.05
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For example,
Ho : All (speed*temp)ij =0

Ha : All (speed*temp)ij # 0

Emissions data were analyzed using ANOVA by technology group as well as
all vehicles as an aggregate. Table 3.4.2 summarizes the p-values with respect to the
major and interaction terms. In the MPFI group, speed and vehicle were the
significant factors for HC, CO, and NOx, while fuel was significant for NOx.
Moreover, 1t was observed that the interaction term temp*fuel was significant for HC
a-nd CO. It was found that in the TBI group, vehicle and cycle were the significant
factors for HC, CO, and NOx, while temperature was a significant factor for NOx.
When CARBU was examined, it was concluded that speed was the significant factor
for HC, CO, and NOx while vehicle was the significant factor for HC and CO, and
fuel was a significant factor for CO.

When all 11 vehicles were considered, it became clear that speed and vehicle
were the significant factors for HC, CO and NOx emissions, while fuel was a
significant factor for NOx only. In summary, all interaction terms in three technology
groups as well as all eleven vehicles as an aggregate were not s{atistically significant,
except in the MPFI group where the temp*fuel term was significant for HC and CO.

The effect of ambient temperature on tailpipe exhaust emissions appeared to be

negligible. This may be due to the vehicles being preconditioned or *warmed up*
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Table 3.4.2 The following summarizes the level of significance (p-value)

based on analysis of variance on vehicle, speed, fuel, temperature, and

mteraction terms.

MPFI
HC CO NOx
Source p-value p-value p-value
TEMP 0.8595 0.8021 0.0975
SPEED 0.0001 0.0002 0.0001
FUEL 0.7803 0.4431 0.0055
VEH 0.0001 0.0001 0.0001
TEMP*SPEED 0.9988 0.8416 0.7180
TEMP*FUEL 0.1828 0.0440 0.0803
SPEED*FUEL 0.9930 0.8388 0.7001
TEMP*SPEED*FUEL 0.9882 0.3618 0.9697
TBI
HC CcO NOx
Source p-value p-value p-value
TEMP 0.7926 0.5486 0.0112
SPEED 0.0001 0.0001 0.0001
FUEL 0.2279 - 0.3466 0.2700
VEH 0.0001 0.0001 0.0001
TEMP*SPEED 0.8942 0.8787 0.94638
TEMP*FUEL 0.8486 0.7344 0.0631
SPEED*FUEL 0.8024 0.9941 0.92386
TEMP*SPEED*FUEL 1.0000 0.9998% 0.9396
CARBU
HC CO NOx
Source p-value p-value p-value
TEMP 0.6068 0.1013 0.8847
SPEED 0.0001 0.0001 0.0001
FUEL 0.6040 0.0022 0.8019
VEH 0.0001 0.0001 0.0772
TEMP*SPEED 1.0000 0.8521 0.8452
TEMP*FUEL 0.7187 0.5124 0.6844
SPEED*FUEL 0.99238 0.9800 0.8838
TEMP*SPEED*FUEL 1.0000 1.0000 0.9996
ALL VEHICLES
HC co NOx
Source p-value p-value p-value
TEMP 0.7621 0.48867 0.3603
SPEED 0.0001 0.0001 0.0001
FUEL 0.2609 0.5059 0.0267
VEH 0.0001 0.0001 0.0001
TEMP*"SPEED 1.0000 1.0000 0.8477
TEMP*FUEL 0.9646 0.9277 0.6235
SPEED*FUEL 0.9758 1.0000 0.4342
TEMP*SPEED*FUEL 1.0000 1.0000 0.9388
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prior to each test, thus enabling the catalyst to attain operating temperature. In general,
1if the vehicles were tested without preconditioning (cold-start), the ambient
temperature was likely to hav:e an impact during the cold-start emissions since the
catalyst is temperature sensitive as discussed in Sections 3.1.7 and 3.1.9 above.

Moreover, ambient temperature has a greater impact on running and evaporative HC

* losses from the fuel delivery system.

Speed and vehicle are clearly the dominant factors in exhaust emissions
modeling. Each vehicle has its unique fuel delivery system, mileage, engine design,
and maintenance/repair record, as well as other factors. All these factors may affect
the emissions from vehicles to a certain degree. The LOW1 and LOW3 cycles
comprise many abrupt stops with sharp accelerations and decelerations. Conversely,
cycles such as UHWY, HHWY, WHWY, and XHWY simulate highway driving
conditions characte-rized by relatively high speeds. Rich open-loop or "off-cycle"
operations take place in the region of high acceleration, deceleration, and speed. This
is a probable explanation for the observation that HC, CO,_and NOx emissions tended
to increase at the low and high ends of the average speed domain.

To summarize the overall temperature, fuel, and speed effects on exhaust
emissions, they were plotted in the following figures. Figure 3.4.1 presents the
population means Iof HC, CO, and NOx emissions b.ased on all tests conducted at
S0F, 75F, and 100 F, respectively. It indicates that the effect of temperature on
éxhaust eniissions 1s minimal. Similarly, Fhigure 3.4.2' illustrates the population means

of HC, CO, and NOx emissions based on all tests conducted with Phase 1, Phase 2,
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and Indolene. It suggests the population mean of Phase 1 fuel is higher than both
Indolene and Phase 2 fuels. Finally, Figure 3.4.3 displays the population mean of HC

CO, and NOx emissions based on all tests conducted at the ten speed cycles. It
indicates that HC and CO erﬁissions have high \_rariation at lower speeds because of
the wider confidence interval. More importantly, it is clear that HC, CO, and NOx
exhaust emissions are strong functions of the average speed of the cycle.

As discussed more fully in the next _se_ction, two main drawbacks of this study
were the small sample size and lack of repeat tests. Since the test-to-test error and
vehicle-to-vehicle variation constituted a large fraction of the overall‘uncertainty, it
requires a large sample size to detect subtle interactive effects. Therefore, in the
present study, it‘was difficult to. detect subtle interactive effects hidden in the "noise."

Despite the small sample size and lack of repeat tests, this present study demonstrated

the importance of speed and vehicle type in exhaust emissions modeling.
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CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS
4.1  Limitations on the Scope of the Study

While mobile source -emissions models (e.g. EMFAC, BURDEN, WEIGHT )
are developed in attempt to understand and predict the complexities of the mobile
source emission inventory, there are limitations in modeling. In particular, these
models tend to define a dynamic open-system as a discrete cIosed—systerg._ In addition,
these models are based on the available research findings from vehicles, and they are
refined as new information arises. Thus, these models can be viewed primarily as a
learning tool to investigate anc-l resolve the problem as opposed to a "solution" to the
problem. Nevertheless, emissions models provide a basis fof estimating emissions
inventorieé which are routinely used by agencies for critical emission control strategy
decisions.

The present study offers an unprecedented and comprehensive approach to
examining the effects of speed, temperature,.and fuel on exhaust_emissions. The major
limitation of this study was the small sample size (n=11). Questions can be raised
about the fleet representativeness because of such a small sample size, however, it was
the optimum sample size given the funding constraints. In the.original project plan,
ten \aehicles were propdsed to be tested. Later, with careful budget management and
the elimination of redundant ta_sks, funding was available to add an eleventh vehicle (a
1992 Ford Taurus). The fuels us‘ed in the presenlt study were summer grade Phase 1

. (without oxygenates), Phase 2 (with oxygenates) and Indolene. Note that the cé)mplete
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fuel speciation analysis is provided in the Appendix. - While this study demonstrates
there is a net benefit in using Phase 2 instead of Phase 1 fuels, there is a need to
confirm the results by assessing commercial grade fuels. That is, will the commercial
grade Phase 2 exhibit the sar-ne benefit over commercial Phase 1 fuel? Though all
commercial grade fuels meet tﬁe specified fuel standards, exhaust emissions could be
affected by the unique fuel composition of each fuel. In particular, the fuel additives
and oxygenates in the commercial grade Phase 1 and Phase 2 fuels are likely to vary
both in quality and quantity. To address this issue, a spectrum of commercial grade
fuels must be tested, but this was beyond the scope of the present study. In fact, an
in-depth study such as the Auto/Oil Air Quality Improvement Research Program has
already investigated the relationship of fuel properties to exhaust emissions (SAE,
1993). In addition, CARB (1994b) haé developed a _p-redictive model to estimate
exhaust emissions based on specific gasoline properties (e:g., RVP, sulfur, oxygenates,
benzene, aromatic hydrocarbons, olefins, Ty, and Ts,).

The basis for selecting the range of ambient temperatures (50 F, 75 F, 100 F)
was that it approximates the full range of California's climate apart from a few special
conditions (e.g. high elevation winter temperature). Results from Chapter 3 indicated
that temperature has a limited effect on exhaust emissions during hot-stabilized
operating mode and temperature effects were significant only for cold start conditions..
In addition, high amBienfc temperature could affect evaporative HC emissions for
resting vehicles. Thus, it is imperative to quantify hydrocarbons from both exhaust

and evaporative sources. To address this issue HC emissions must be measured from
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both exhaust and evaporative sources during testing, but this was beyond the scope of
this study.

.Another issue the présemf study did not address adequately was test-to-test
variation or test error, for exémple errors caused by instruments and the driver. Even
though drivers may record no violations in following the speed trace during the tests,
none of the drivers could follow an identical speed trace, even when the same driver
repeated the test, because there was a margin of + 2 mph in following the speed trace
on the monitor. Thus, a driver effect could be one major source of test error and this

issue was not addressed in the present study.

4.2 Conclusions

Based on the eleven vehicles investigated in the present study, it was found
that more recent model year vehicles were "cleaner" than older model year vehicles
and the exhaust emissions increased in the order of MPFI, TBI and CARBYU. In other
words, exhaust emissions were affected by the fuel delivery technology aﬁd model
year of the vehicle.

Because of high vehicle-to-vehicle and cycle-to-cycle variation, the effects of
temperature and fuel on exhaust emissions could not be obsérved, which in tumn
suggested that both vehicle and speed were reIatiyer more important than temperature
and fuel factors. In general, all HC, CO, and NOx emissior.ls were strong functions of
" speed. Both HC and COb emissions increased sharply at lower speed while NOx

tended to increase slightly both at low and high speed. Besides, CO exhibited a
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higher variability than HC and NOx emissions across all speeds.

Temperature has a limited influence on hot-stabilized exhaust emissions since the
catalyst was "warmed-up" during hot-stabilized operating mode. However, the
temperature effects on exhaust emissions were more pronounced durin g the cold start
mode the test cycle as indicated from the comparison study of UC Bag 1 and Bag 3 (both
bags were hot start) versus FTP Bag 1 (cold start) and Bag 3 (hot start). There was no
statistical significant difference between Bag 1 and Bag 3 of UC, while the FTP Bag 1
exhaust emissions were statistical significant higher than Bag 3. In short, the temperature
affect the conversion efficiency of the catalyst, which in turn caused high exhaust
emissions during the cold start mode of the FTP.

Furthermore, when comparing the exhaust emissions difference due to Phase 2
and Phase 1 fuels based on all vehicles, cycles and temperatures, it was found that the
average exhaust emissions benefits of Phase 2 over Phase 1 fuel on HC, CO, and NOx
were 17%., 13% (statistically insignificant), and 11%, respectively. Note that studies
from CARB estimated emissions reduction between Phase 2 and Phase 1 fuel for HC
(including evaporative and exhaust emissions), CO an(_i NOx were 17%, 11%, and 11%,
respectively based on 1996 calendar year. Nevertheless, the findings from the present
study were in good agreements with the predictions from CARB.

The best fuel economy for MPFI, TBI, and CARBU were 33,30, and 28 miles
per gallon, respectively, at the optimum speed of 45 mph. In general, the fuel economy
increased in the order of CARBU, TBI and MPF], which was probably due to better fuel

delivery system leading to improved engine combustion, as well as
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improved zerodynamics.

The catalyst efficiency test for each vehicle was conducted under FTP
(Indolene and 75 F). It was ;found‘ that all vehicles in the CARBU group (with
average model year greater than 12 years) characteristically possessed a "dead"
catalyst. This could partiélly explain why vehicles from CARBU were generally high
emitters. It was also observed that catalyst efficiency was extremely temperature
sensitive. Based on the vehicles from the MPFI and TBI groups, the average Bag 1
(cold start) catalyst efficiencies of HC, CO, and NOx were only 88%, 77%, 90%
relative to the average composite catalyst efficiency. Thus, it is imperative to quantify
the frequency of cold starts in a fleet in order to have a good emissions estimate from
cold starts.

The test repeatability was examined based on the two test sequences (Indolene
and 75 F), and it was concluded that the 1989 Mercury Topaz and 1982 Buick Re-gal
were not repeatable for HC, CO, and NOx emussions. In addition, NOx emissions
from the 1992 Toyota Paseo and CO emissions from the 1983 Honda Accord were
also found not to be repeatable. This inconsistency of test data could be caused by
prolonged non-use between the 9th and repeated (10th) sequences as well as test-to-
test error. In general, the baselings (or FTPs) for HC and NOx were relatively stable
for all vehicles during the course of first nine sequences, whereas the baseline fo-r CO
exhibited greater variability than HC and NOx. One of the drawbacks from the
present study was tﬁat {/e;h.iélés often i.dled for an unllmown. period of time between

tests. It was expected that such test-to-test variation could be minimized if the vehicle
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non-use time could be reduced.

The principal component analysis (PCA) was employed to explore the
interrelationships among fuel (as Reid Vapor Pressure), temperature, speed, the number
of cylinders, mileage, model year, engine displacement, HC, CO, and NOx emissions
on all eleven vehicles. Based on the first principal component, it was concluded that
HC, CO, and NOx emissions were inversely related to the speed. No other
meaningful conclusion can be derived from the second principal component and
beyond. Despite the limitation of PCA for the dataj the results highlight the
importance of speed factor to HC, CO, and NOx emissions.

One of the key assumptions in the CARB mobile source emissions model
(EIVLFAC) is that there are no interactions or synergistic effects among speed,
temperature and fuel corfection factors. This fundamental assumption has never been
challenged or investigated. Based on the analysis of variance (ANOVA), it was
concluded that speed and vehicle type were the dominant factors affecting exhaust
emissions. More importantly, the interaction or synergistic effects between fuel,
temperature, and cycle were found to be statistically invsigniﬁca.nt. Thus, the EMFAC
assumption that speed, temperature, and fuel are independent was confirmed at least

for the population of vehicles investigated.
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4.3 Recommendations for Future Research

The results from the present study help to establish strategies and priorities in
future mobile source emissioins research, especially when many issues need to be
addressed under a limited research budget. Based on the present study, the relative
signiﬁcan“ce of speed, temperature, and fuel factors onA exhaust emissions were
established. It was evident that additional studies are needed on cycle-related research
since speed is the dominant factor in determining the HC, CO and NOx exhaust
emissions. In particular, we need to assess exhaust emissions from cycles with
extremely low speed (1dling) and high speed (above 75 mph). There is a need to
incorpérate these findings into the current EMFAC model. -In addition, there is a need
to assess other parameters that are related with exhaust emissions such as grade, high
Ioad, and air conditioning. All these issues need to be addressed in order to improve
our current MVEI model.

‘There is also 2 need to assess the test-to-test variability caused by drniver
behavior. While the error margin for the driver to follow the speed trace is & 2 mph,
it is possible such small difference when accumulated over the entire cycle could cause
major differences in the test results. Thus, in order to sharpen our tools on motor
vehicle emissions research, it is crucial to evaluate and assess sources of teét error
especially due to the driver-to-driver variability.

From the vehicles investigated in.the present study, high emitters were
generally found in older vehicles (more than 12 'y.ea.rs. 6[(:1‘) with "dead" catalysts.

There is a need to assess the impact of "high" exhaust emissions from such group on
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the total mobile source emissions. Since catalyst is a critical component on exhaust
emission control, there is a definite need for research on how to prolong the operating
life of the catalyst.

There were 1100 mod;al data files (about 250 Megabytes) collected from this
study and each test file, ranges from approximately 350 to 1400 seconds depending on
the length of the cycle, contains second-by-second instantaneous reading of HC, CO,
NOx, COz2, exhaust oxygen content, vehicle actual speed, catalyst temperature, and
engine rpm. The next phase of the present study need to access the exhaust emissions
dynamics based on the modal data collected,

As each cycle comprises a mix proportion of idle, acceleration, deceleration,
and cruise, it is of interest to find out‘ what is the real-time exhaust emissions under
different combinations of speed and acceleration. Will the fuel and temperature make
any difference during the real-time emissions? How is cétalyst temperature related to
HC, CO, and NOx exhaust emissions on a real-time basis? Does the technology group
make any difference on exhaust emissions? At what speed and acceleration domains
will excursion of exhaust emissions occur? Can real-time exhaust emissions be
modeled? What are tﬂe important parameters to model real-time exhaust emissions?
Obviously, many questions need tp be answered thorough the modal data analysis.
Perhaps with the modal data analysis, it will shed new light on motor vehicle

emissions modeling.
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A3 Raw Data (Units are in gram/mile uncless otherwise noted)
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